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PREFACE

I This report summarizes the research carried out under the Office of the Naval Research grant

# N0014-92-J-1030 during the period 1992-93.

The tasks accomplished are: (1) synthesis and analysis of guided wave optical interconnects;

(2) Synthesis and Analysis of optical waveguides with prescribed TM modes; (3) development

i and testing of direct scattering solver to analyze optical waveguides; (4) development of inverse

scattering theory for the design of planar optical waveguides with same propagation constants for

I different frequencies; (5) Analysis of coupling in multilayered waveguides using inverse scattering

techniques; and (6) Soliton-soliton interaction in nonlinear optical waveguides and bistability in

nonlinear periodic media.

Five journal articles have been prepared during the preiod 1992-1993 based on the research

carded out on this project and they are in different stages of publication. Two Ph.D. dissertations

S are also being carried out under this grant. Reprint and Preprint of selected research articles are

attached in the appendix.

f The award of this grant has been of great help to me and my students in carrying out our

research and is gratefully acknowledged.

Richardson, TX Lakshman S. Tamil

Aug. 10, 1993 Principal Investigator
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DESCRIPTION OF RESEARCH CARRIED OUTI
1) Synthesis and Analysis of Planar Optical Waveguldes with Prescribed TM Modes

SAn inverse scattering approach to designing optical waveguides with prescribed propagation

characteristics of TM modes is developed. The refractive index profile of the waveguide is

formulated as a solution to a nonlinear differential equation whose forcing function is the potential

obtained from the application of the inverse scattering theory. This method can reconstruct smooth

I refractive index profiles for planar waveguides that support single mode or multi modes, Both

the cases of zero and nonzero reflection coefficient characterizing the transmission properties of

waveguides are discussed here. A direct analysis technique based on finite difference scheme

has been formulated to verify the results obtained by inverse scattering method and they are in

excellent agreement.

2) Guided Wave Optical Interconnects

'3 A guided wave optical interconnect that reduces or eliminates clock skew by ensuring simulta-

neous delivery of dock pulses to chips mounted on a wafer (see Fig. 1) has been designed. The

interconnect consists of a multimode planar trunk waveguide and a set of planar branch waveg-

uides, one per chip, each of which couples one mode out of the trunk waveguide. The elimination

of the clock skew is accomplished by taking advantage of the different group velocities of the

modes and tailoring the propagation constants of the trunk waveguide according to the location

of the respective chip on the wafer.

The Darboux transformations of the inverse scattering theory is employed to design refractive

index profiles of the trunk and branch waveguides, using the set of propagation constants selected

based on the length of each detector from the source and the group velocity of the mode carrying

the clock or the data to that particular detector point. Coupling between the trunk and the branch5 waveguides are also analyzed. It is theoretically possible to ensure nearly 100% coupling from the

trunk to the branch, although the trunk and the branch waveguides are not identical. Techniques

for ensuring a smooth trunk refractive index profile are investigated. The relationship between

circuit size, spread of the propagation constants, and allowable circuit loss are exarmined in detail.

Ia
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U• 3) AnalysIs of Coupling in Multilayer Planar Optical Waveguides

using Inverse Scattering Theory

Coupling between waveguides in a multilayer structure is the cornerstone of optical spatial

i switching. The traditional weak coupling analysis of interacting waveguides has been reformulated

in the language of scattering theory. We show that the coupling coefficients describing the

_- interaction of two neighboring waveguides have straight forward representations in terms of their

scattering data, eliminating the need to explicitly calculate the field dependent interaction integrals,

and replacing the integrals with straightforward algebraic expressions involving the guided modeIpropagation constant and the residue of the reflection coefficient.

(4) Inverse Scattering Theory for the Design of Optical WaveguidesI• with Same Propagation Constants for Different Frequencies

We have developed inverse scattering theory for designing planar optical waveguides pos-

sessing the same prescribed propagation constants for different transmission frequencies. The

design problem for TE modes is transformed and reformulated to an equivalent inverse problem

for Schrodinger equation. Then using inverse scattering theoiy, the potential as a function of a

modified spatial variable is recovered. Next the important problem of finding an explicit relationI between the actual spatial variable and the modified spatial variable is solved and a systematic

procedure is developed for designing waveguides which have the same propagation constant
i for different light frequencies. Existence and uniqueness questions are also studied and design

examples are worked out.

(4) Design of Optical Fibers with Same Propagation Constants for Different

Azimuthal Modes and its Application to Image Transmission

Inverse scattering theory for fixed angular momentum has been modified and applied to the

"design of optical fibers possessing prescribed propagation constants for different azimuthal modes.

Such designed optical fibers find application in the transmission of spatial images. The dephasing

in the spatial images which is generally attributed to the different modal dispersion of different

modes can be totally eliminated. The results obtained using inverse scattering theory has been

validated using a finite difference base direct procedure. Also, sensitivity studies on the refractive

index profiles have been investigated.

1 3
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I(S ) Finite Difference Analysis of Optical Waveguides

To test the validity of any design obtained using the inverse scattering theory, an alternative

independent approach is necessary. So, we have developed a finite difference based direct

scattering solver that can verify the design results obtained using the inverse scattering theory.

3 We have formulated a matrix eigen value problem for cylindrical and planar optical waveguides

from a set of finite difference equations. Numerical solution of this problem yields the propagation

L constants for propagating modes. The method can be used for arbitrary index profiles, does not

require the explicit evaluation of Bessel or modified Bessel functions, and does not use iterative

£methods to search for the propagation constants as was the case in earlier proposed methods

"using finite differences. The method we have developed is accurate, fast and simple. We have

rI established the convergence and stability of this method, and explored the effects of finite cladding

width on the dispersion characteristics. The computer software we have developed can be used

interactively to explore dispersion in optical fibers and optical waveguides.

3! (6) Nonlinear Optical Waveguides

The knowledge gained in the process of applying spectral inverse scattering theory to the

I- design optical devices is useful in extending to the study of nonlinear optical waveguides. The

problems that limit the information carrying capacity of the soliton based communication are the

Im soliton-soliton interaction and the soliton self frequency shift known as Gordon-Haus effect. We

are exploring both the effects. Also we are studying nonlinear periodic and aperiodic media both

Il from the inverse scattering point of view and using simulation. The goal is to synthesize optical

bistable devices which can be extended to the design of optical logic devices. Optical logic devices

3 are crucial to the development of ,'ntical computers.

S4
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I Abstract

An inverse scattering approach to designing optical waveguides with prescribed

propagation characteristics of TM modes is presented. The refractive index profile of

I the waveguide is formulated as a solution to a nonlinear differential equation whose

i forcing function is the potential obtained from the application of inverse scattering theory.

This method can reconstruct smooth refractive index profiles for planar waveguides that

5 support single mode or multi-modes. Both the cases of zero and non-zero reflection

coefficients characterizing the transmission properties of waveguides are discussed here.

SA direct analysis technique based on finite difference scheme has been formulated

g to verify the results obtained by inverse scattering method and they are in excellent

agreement.

I
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1- 1. Introduction

The conventional method of designing optical waveguiding structures is to assume a

refractive index profile and solve the governing differential equation to find the various

U propagating modes and their propagation characteristics. If the propagation characteristicsa do not meet the expected behavior, the refractive index is changed and the propagation

characteristics are again evaluated; this is repeated until the expected propagation behavior

3 of the modes are obtained. This being an iterative procedure, it is time consuming. Also,

to obtain certain arbitrary transmission characteristics, one may not be able to imagine

i the right initial refractive index profile. It is important to understand that we normally

come up with initial profiles that have mathematically a closed form such as parabolic,

secant hyperbolic etc.

3 The procedure discussed in this paper as opposed to the direct method, starts with

the required propagation characteristics of the waveguide and obtains the refractive index

U profile as the end result. This is achieved by transforming the wave equation for both

the TE and TM modes in the planar waveguide to a Schrodinger type equation and then

applying the inverse scattering theory as formulated by Gelfand, Levitan and Marchenko

3 [1-2]. The inverse scattering problem encountered here has a direct analogy to the

inverse scattering problem of the quantum mechanics. The refractive index profile of the

IR planar waveguide is contained in the potential of the Schrodinger type equation and the

propagating modes are the bound states of the quantum mechanics [3].

An inverse scattering theory with zero reflection coefficient characterizing the prop-

_ agation property has been applied earlier to the design of planar waveguides by Yukon

and Bendow (4]. In that work, the refractive index profiles were constructed only for

3 the prescribed TE modes. The inverse problem of designing optical waveguides whose

transmission property is characterized by a non-zero reflection coefficient has been solved

19
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mI for TE modes by Jordan and Lakshmanasamy [5], In this paper we have applied the in-

verse scattering theory with both the zero and the non-zero reflection coefficient to design

planar waveguides with prescribed TM modes.

In section 2 we review the problem of the electromagnetic wave propagation in a

planar waveguide for both TE and TM cases [6], then we present a way to transform

I wave equations to Schrodinger type equations. In section 3, we review the Kay's inverse

3 scattering theory [7] and Gelfand, Levitan and Marchenko equation [1-2]. The inverse

scattering theory is then applied to planar waveguides for the case of TM modes in the

3 zero and the non-zero reflection coefficient conditions separately. The single mode and the

multi-mode refractive index profiles with prescribed TM modes are obtained by solving a

I nonliear differential equation using the Runge-Kutta's fourth order approximation method

g as discussed in sections 4 and 5. Construction of the potentials for a single mode

planar waveguide for the non-zero reflection coefficient case using rational function of

3 wavenumber as reflection coefficients is presented in section 5.

In order to verify the results obtained by inverse scattering theory we have developed

I an efficient finite difference method to find the propagation constants of guided TE

and TM modes and is presented in section 6. We start from the wave equations for

TE and TM modes and transform them to a set of finite difference equations. Then

Ia matrix eigenvalue equation, from which the propagation constants can be found, is

constructed. The numerical results are obtained for several graded-index waveguides,

* and we have compared these results to the previously published analytical solutions and

1 results obtained by other numerical methods. The conclusions are given in section 7.

t
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1 2. Physical Model of a Planar Waveguide

j The wave equations for the inhomogeneous planar optical waveguides can be derived

from the Maxwell's equations. If we take z as the propagation direction and let w

3 represent the frequency of laser radiation, we have the following wave equations for one

dimensional inhomogeneous planar waveguides [6]

I Ey(x) + [kge(x) - I] E,(x) =o (1)

for TE modes and

dI d [ 1 de(z' 1 k2
- E•(x) + d7) [y,) E[( X)]_ + [X]EX) = 0 (2)

for TM modes. The planar waveguide we are considering here has a refractive index

3 which varies continuously in the x direction. For the planar optical waveguide shown

in Fig. 1, our problem is to find the refractive index profile function in the core for a

I set of prescribed propagation constants.

3 We assume that this planar waveguide has a refractive index profile guiding N modes.

The propagation constants {I} are ion1 > 61 > #2 > ...-- N --> kon, in which n,

3 is the value of n(z) as x --+ 0o and ni = sup n(x). Designing an optical waveguide is

analogous to the inverse problem encountered in quantum mechanics. We are trying to get

I the potential function from the given bound states and scattering data. The wave equation

I for the TE modes can be easily transformed to an equivalent Schrodinger equation

d2 TEy(x) + [k' - V(x)] Ey(x) =0 (3)

by letting

V(x) = -ko[-(•) - no] (4)I
I II
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U and
I k= - =-(pn - k no)• (5)

We can see in our case the potential function V(x) is continuous and V(x) --. 0 as

I x 0--+ 0o. The TE mode cases have been solved by Yukon and Bendow [4] and Jordan

5 and Lakshmanasamy [5], so our discussion will be restricted to TM modes.

We now need to transfer the wave equation for the TM modes to Schrodinger type

I equation in order to apply the inverse scattering method. In wave equation (2), the first

g derivative of E. can be eliminated if we let E,,(x) = -I/ 2 (z)$(x). The wave equation

then becomes

02 1 d~f(x). 3 (d&(X)\21.+ 2

d--- + I 2c(x) dX2  4c2(x) dx + (k..E(X) - # 2 )-O o (6)1
3 We are now able to get the equivalent Schrodinger equation

£dx 24D + [k 2 -_V(X)]'D(X) =O (7

3 by setting the potential function as

3 (de(X) 2 1 d2c(x)_-k(c(x)_n 2
~)=4e2(x) d ) 2e() dX2  00~~x -n, 8

3 and letting

3 k 2 = -X2 2n _c #kn (9)

I
| 12



I
I

1 3. Inverse Scattering Theory

The inverse scattering theory of Kay and Moses [7] provides us a way to obtain the

potential from the reflection coefficient which characterizes the propagation properties of

3 the planar waveguide. As the potential we defined vanishes at infinity, we can apply the

Gelfand-Levitan-Marchenko (GLM) equation to solve our problem. Let us consider a

time-dependent formulation of the scattering. Taking the Fourier transform of Eq. (7);

3 the transform pairs are t(x, k) 4* TL(x,ct) and k <* t, we obtain
82 82
-2 (x,t) - a-P(x,t) -V(C)T'(X,t) = o, (10)

in which t is the time variable with the velocity of light c = 1. The incident plane wave

3 is represented by the unit impulse

I •(Z't) =b(Z -t), X < 0, t < 0,()

I which will produce the reflected transient wave function

00 N3R(z + t) = 1 J r(k)eik(z+t)dk + E Ane-ik"(+t) , (12)
2r-00 n=1

Swhere k2 = -IC2 are the discrete eigenvalues of Schrodinger type equation. (7), r(k)

is the complex reflection coefficient, An are arbitrary constants normalizing the wave

3 equation such that

+00

j (x)*(x)dx = 1 (13)
-00

The reflected transient is produced only after the incident unit impulse has interacted

3 with the inhomogeneous core of the optical waveguide and therefore

3 R(x+t)=O for x+t<O (14)

1 13
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I A linear transform independent of k can now relate the wave amplitude I(z,t) in the

core region with the wave amplitude *o0(x, t) in the exterior region

%F(zt) , P { o + f K(,) (15)S0(X, t) X < 0

5 Here the exterior field is

o(,t)= 6(x - t) + R(x + t) (16)

From physical consideration, since 'I'(x, t) is a rightward moving transientI
TI(x,t) = 0 for t < x. (17)

Thus the kernel K(x,t) = 0, for t > x and K(x,t) = 0 for t < -z. Substituting Eq.

1 (16) into Eq. (15) and using Eqs. (14) and (17) yield the integral equation

IK(x, t) + R(x + t) + Jz K(x, &)R(C' + t)'= 0 t < x (18)

We can show that by substituting Eq. (15) into Eq. (10) the kernel K(x, t) satisfies

3 a differential equation of the same form as Eq. (10) provided the following conditions

are imposed

K(x,-x) =0 , (19)
II

and

2 dK(x, x)= V(). (20)

i We now could see how the solution of the integral Eq. (18) for the function K(z, t) can

lead to the synthesis of optical waveguides.

I1
| 14
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3 4. Design Example 1: Zero Reflection Coefficient

The reflection coefficient characterizes the propagation properties of the optical

waveguides. The zero reflection coefficient characterizes a system with propagating

5 modes only where as the non-zero reflection coefficient characterizes a system with both

guided and nonguided modes. Let us first consider the special case of zero reflection

coefficient [8]. Substituting Eq. (12) for r(k) = 0 in GLM equation (18) we have

N N V

Z(x,t) + 'IAKP.(x+,) + E An I (x, ý)er-(i+)d = 0. (21)
K--- n=1 +0

It is clear from the above equation that the solution for K(x, t) should have the form [8]

N (22)

n=1l

Substituting Eq. (22) into Eq. (21) produces a system of equations for fn(z):

SAn (eu= T ) fy (x) + fn(x) + Ane'n£ = 0 (23)

where n = 1,2, ...N. This system can be conveniently written as

[A][f] + [B] = 0 (24)

where [f] and [B] are column vectors with fn, and B, = An exp (r.,x) respectively, and

A is a square matrix with elements

3A 1,3 = Sn+ A 4 -+-) (25)

in which 6bn is a Kronecker delta. The solution for f is f = -A- 1 B and then from Eq.

(22) K(x, x) = ETf where E is the column vectors with element E. = exp (•,ax) and

3 T denotes transpose. Now,
d
d4Amn = A,,e(r- +I')X = BE, (26)

3 15
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I and so

K(xx) = E~f. = -EnA-nB = A-' d A (27)

3 when written with subscript notation and the summation convention. The K(z, x) given

by Eq. (22) can be recognized in the form

K(xx) = tr(A-, dA) = d etA) (28)

and therefore the potential V(z) according to Eq. (20) is

V(x) = -2--- In (detA). (29)
dX_2I

3 Given N modes with desired propagation constants, we can obtain a potential function

as given by Eq. (29). Here we have N degrees of freedom due to N arbitrary constants

3 {A, In= 1,2...N}.

For TE modes the refractive index profiles is simply given by
(X) 2 V(x) (30)

in which ko is the free space wave number. Where as for TM modes, obtaining the

refractive index profile is little more complicated as it is a solution to a nonlinear differ-

ential equation (8). The nonlinear differential equation can only be solved numerically.

I Equation (8) is first transformed to a convenient form by setting c(x) = ev('), we then

obtain,
I d2 y(x) 1 [dy(x)]2  2(:)[(31)2 d=2 4[ dx I + kez)+ [V(x) -/gnl] = 0.(1

This is a constant coefficient equation which yields the refractive index profile s/•}

provided the potential V(x) is given.

3 16
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i To demonstrVte some practical examples, let us compute the refractive index profiles

5 for two cases: the single mode case and the N mode case.

For the single mode case, Eq.(23) becomes

Ajer*z + fi(x) + =0.) (32)

I Then, the potential has the form

3 V(X) = -4lAle 2Iz (33)
(1 + Aie2rjz/2xj1)

2

3 where A, is an arbitrary constant and note that x, can be obtained from

2 1 1 on . (34)

3 For a desired propagation constant fl1, we can get a set of refractive index profiles

corresponding to different arbitrary choice of A 1; see Fig. 2. We use the following

I data relating to waveguide: n(oo) = n. = 2.177, wavelength A = 0.8prm and

=1 = 17.20 (prm)- 1 . We obtained the refractive index profiles by solving Eq. (31) using

I the potential V(x) obtained from Eq. (33). Runge-Kutta's fourth order approximation

3 is applied in solving the differential equation (31) [9]. We can see from Fig. 2 that the

maximum value of refractive index lies on the positive side of x = 0 when A1 < 2r1;

on the negative side of x = 0 when Al > 2r.1 and at x =0 when A 1 = 2j1.

On substituting Al = 2r1 into Eq. (33) yields

V(x) = -- 2x2s1ech2 K1z . (35)

This potential is everywhere negative and goes to zero as x goes to infinity. Also the

3 potential is symmetric about its minimum point. We can truncate the potential at the

point where the potential is 1% of its maximum value to find the width of the core d.

17
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The refractive index profile corresponding to this potential is shown by continuous line

5 in Fig. 2.

Similarly, for the N mode case, we need to construct the potential first using Eq. (25)

3 and then solve the nonlinear differential equation (31) for the refractive index profiles.

For a set of prescribed propagation constants, every arbitrary choice of normalization

constants will produce a different potential and a corresponding refractive index profile.

3 In order to construct a symmetric refractive index profile with single peak, we found that

the normalization constants {An I n = 1, 2...N} must satisfy the following equation [10]

I An / 2i , (36)

3 where

w eeP n = (-1)"n- I N1 -- ---- n = 1 72,...N (37)

for the reflectionless case. Here N is the number of guided modes in the planar

3 waveguide. For the case N = 5, using sets of arbitrary normalization constants

({A I n = 1,2...N} we have computed the refractive index profiles and these are shown

in Fig. 3. The symmetric profile obtained using the condition (36) is shown by continuous

3 line in the figure.

g 5. Design Example 2: Non-Zero Reflection Coefficient

In the previous section, we took advantage of assuming that the reflection coefficient

3 is zero, which simplified the problem a lot. Now we are going to solve the problem with

non-zero reflection coefficient. We follow here the work of Jordan and Lakshmanasamy

[5].

3 We take the rational function approximation for our scattering data. We represent our

reflection coefficient using a three-pole rational function of transverse wave number k [5],

5 the three poles are: one pole on the upper imaginary axis of the complex k plane, which

* 18
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i represents discrete spectrum of function R(x + t) (see equation (12)) characterizing the

5 propagating mode, and two symmetric poles in the lower half of the k plane, which

represent the continuous spectrum of R(x + t) characterizing the unguided modes. The

3 three-pole reflection coefficient can be written as

r(k)=-- (k- ki)(k- k2 )(k- k3 ) (38)

g where r0 can be determined by the normalization condition r(O) = -1, this condition

ensure total reflection at k = 0. ki, k2 have following forms: k, = -CI - ic2 and

5k2 = c1 - ic2. The third pole on the positive imaginary axis is k3 = ia.

The pole positions are confined to certain "allowed regions" that are determined by

I the law of conservation of energy, which can be represented by Ir(k)12 < 1 for all real

k; see Fig. 3 in Ref. [5] for details.

It has been shown that the reconstructed potential function V(x) has following form

1 [5]:

V(x) = 2 daTx) a T(x)A-1 x d(A(x)) A 1(x)b ,(39)
2 daTx) dx

in which, a and b are column vectors, and are given by

an d a T (x ) = [ x x e , l x ee - 1Z eV Z eC - z ] 
(4 0 )

3 bT=[0 0 0 0 0 -- a(c2+C 2 2)] , (41)

where

S=[a2 +4- (a+ 2 -4c)i1/2 (a2 + 4c~l) 12](2II= [1 - (42)

* and
and i2 = la2 + c - c- (a 2-4c)1/2(a2 + 4c24)/1/2 (43)

3I 19
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I Matrix A(x) is given by

S0 1 0 0 0 0
0 0 f(rl) a(c• + ) 0 0
0 0 0 0 f(,12) a (d+ ) (44)
I X e-171Z eth z e-1 2Z e92Z

0 -1 1-rle~z 171eIZ 12e--9t 172e Z
o, 2e -"O ,l2e'h 2 -2e ,12

where the function f(x) is constructed by

f(z) = X3±+(2c2 -a)x 2 + [c~l+ j- 2ac2 x - a(c~l + c4) .(45)

I
3 So, it is possible to construct the potential from the three poles of reflection coefficient

using the above equations. We choose here two examples. In example 1, the poles

3 are determined by the following parameters: a = 1.0, cl = 0.8, and c2 = 0.499;

example 2 has different unguided modes characterized by cl = 0. 05, C2 = 0.1

and the same propagating mode characterized by a = 1.0. Figure 4 shows the plots of

3 potential functions for examples 1 and 2. In the example 2, we see that the potential

is everywhere negative.

3 Figure 5 shows the refractive index profiles for TM mode in both the above discussed

examples obtained by substituting the potentials into the nonlinear differential equation

(31) and solving for V,/(4. We notice that a depressed cladding is obtained in example

3 1 and we also see that the profiles we found here resemble the profiles we normally find

in practical optical waveguides [I 1].

2
U
I
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3 6. Verification by Analysis

I In order to verify the results obtained by inverse scattering theory, a finite difference

based analysis scheme is developed here. Using this method we find the propagation

3 constants of guided TM modes of an optical waveguide with arbitrary refractive index

profile. Owing to its simplicity and flexibility, this method is proved to be very effective.

Now we consider a symmetric planar waveguide. For the TM modes we have [6]

By = Hz = Hz = 0 (46)

E= (A) Hy (47)I
3 = ()E, ~ (48)

with the H. component obeying the wave equation

n 2 a 1 My (#2 - n2 (xQ)k )H1 (X) (49)I aTX fn2 JX,

3 For the one dimensional graded index planar waveguide, the refractive index is a

function of x, and the wave equation can be transformed to

d2 H,(x) 2 d(n(x))dH,(x)
"dx2  n(x) dx dx + (- 2 (x)k4-- 2)H 1(x)= . (50)

3 If H. and its derivative are single valued, finite and continuous function of z, we have

the following finite difference approximation to the differentials

U dH HI+j - Hi-(

dx- 2h
* and

d2H H1+1 - 2Hf + H_ (52)
dx2  h2
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U in which we have used H instead of H. for simplicity. We have Hi- 1 = H(x- h);

Hi = H(x); and HI+j = H(x + h), in which h is the distance between the grid points

and i is the index of the grid point. Now we obtain the following equation by substituting

3 the finite difference approximation of the first and the second derivative of H into the

wave equation (50).

5 (1 I •H ( _L2_2 )HiH+ ((53)
T-2 +H+hd) +h2 h2 nih dx\=O+,53)

U in which ni = n(ih), the value of dni/dx is the derivative of refractive index n at x = ih.

3 We have chosen three grid points in each region: the substrate, the film and the cover

for the purpose of illustration (see Fig. 6). For the case considered here the boundary

3 conditions are

I fo= 0 (54)

and 
H8 =0 , 

(55)

3 that is, the field vanishes at the ends of the cladding. Absorbing boundary condition

should have been more appropriate, however it is not used here.

We can write finite difference equation at every grid point from i = 1 to i = 7. We

3use function f(i) to represent the derivative of n(i) which is obtained again by a finite

difference approximation and is denoted by

f(i) = dn(i) (56)

Note that f goes to zero in the substrate and in the cover region. We have at i = 1,

U H0 = 0 and so

2_#2 2 Hi I H2 22(57)
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3 Ati =2,

3C ,+(. # 1 h2)H2+T23 (58)

In the film, we have at i = 3,

(1 ( 2(1)4 x) h2 H3(1)1
+C (1) H2+ (n -C -C+ - -T-f--J l))H4= 0. (59)

"3 At i = 4,

I ( + (T()2 ))H 3 +(n (2 ) - (60)

At i = 5,

1 1 2 21 1
T2_ (-3hf(3 H4(n ()k0 _ T- 5 + C2 ; (-3) hJf(3) H16= 0. (6 1)

I At i = 6,

1 I 3+ (n2-#-2)H6+ 1 H o (62)

3 and at i = 7, since H8 = 0, we have

I U+ (n2k2H _) 2_I 27 =) 0 (63)

U
We can rewrite these finite difference equations by a matrix equation for conve-

3 nience.

all - #2 a12 0 0 0 0 0 H,
a21  a22 -32 a23 0 0 0 0 HI2

o a32  a33-•- 2  a34 0 0 0 H3
AH= 0 0 a43 a44- 2 - a45 0 0 114 0.

0 0 0 a54 a55 _ #2  a56 0 H5
0 0 0 0 a65 a 66 -- # 2  a67 H6

0 0 0 0 0 a76 a 77 - #2  1 H17
(64)

*I 23
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3 in which the elements of matrix A are defined by

all = -T+2 2 aN,N (65)

a12 = W = aN,-j , (66)

I and for2 < i < N we have

3 I 2<i<N 1 ,NI+N 2 <i<N
Sa, NI<i•<NI+N 2

I2 2 2<i<N1 ,N,+N 2 <i<N

I =)fl 2  -. 9 2<i<N1  N,N+N 2 <i<N (9
~n2k- (69)

ai•= n2(i)ko2 _ 2• N, < i <_ N, + N2V

In which, f(i) is the derivative of the refractive index at x = ih, Nh, N2 and N 3 are the

number of grid points in the substrate, film and cover respectively, and N = N1 + N 2 + N3

3 is the total number of grid points. The other elements of the matrix which are not defined

above are zeroes.

3 The matrix A can now be split into

A= [B-_ 2] , (70)

3 where the matrix B has the following simple form and I is the identity matrix,

"all a 0 0 0 0 0
a21  a22 a 23  0 0 0 0
0 a 3 2  a 3 3  a34  0 0 0

B= 0 0 a 4 3  a44 a45 0 0 (71)

0 0 0 a54 a55 a56 0

0 0 0 0 a65  a66 a67
L 0 0 0 0 0 a76 a77
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3 The matrix equation (64) can now be rewritten in the form

3 [B - #2I]H = 0. (72)

I
To find the propagation constants of the guided TM modes, we have to solve the

I eigenvalue problem of equation (72), which has a nontrivial solution if and only if #2

are eigenvalues of B. So finally we have

I#} = i-iB (73)

for both odd and even modes. For the TE modes, the situation is much easier since the

I wave equation has a simpler form than the TM modes. The field component E, obeys

the wave equation [6]

'2 - nC X) .(74)

We can find a matrix expression similar to the one we found for TM modes. In the TE

I case we need not calculate the derivative of the refractive index profile.

3 For the given refractive index profile distribution n = n(z) the matrix B can

be constructed and the propagation constants {fi} can be obtained by solving for the

3 eigenvalues of this matrix.

Before attempting to analyze the refractive index profiles obtained by the application

of the inverse scattering theory, we want to see whether the finite difference technique

3 developed here provides the right result. In order to do that, we have applied the technique

to various refractive index profiles such as parabolic and Gaussian for which results are

3 already available in the literature [12]. The results corresponding to TM modes are given

in Table 1 and 2. They all show that our analysis technique is accurate and powerful.

I
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I Having established the accuracy of the finite difference technique, now we can use

3 this technique on the arbitrary refractive index profiles we have obtained. Figure 7

shows the dispersion characteristics for the refractive index profile with single symmetric

3 peak shown in Fig. 3. The normalized frequency V has been determined from the

waveguide thickness and the free space wavelength of the propagating modes, here we

have V = kod n- n2 = 37.6883. The normalized propagation constant we used here

3 is defined by

#2 -I
Here, n2 is the refractive index of the cladding and n1 is the maximum refractive index

of the core. As we see, the number of IM modes present are the same number we

3 started with in reconstructing the profile. The refractive index profiles corresponding to

the non-zero reflection coefficient as shown in Fig. 5 when analyzed yields a dispersion

3 characteristics shown in Fig. 8. Again we see the consistency in the number of modes

obtained by analysis and the number of modes used in the synthesis of the profile. Though

we have shown that the number of modes are right, it is not a sufficient proof that the

3 reconstructed refractive index profiles have the same propagation constants for each of the

specified modes. To check this, we have compared (Table 3) the propagation constants

3 of various modes we used in reconstructing the refractive index profile of the waveguide

against the propagation constants obtained by analysis for the normalized frequency at

I which the propagation constants are prescribed. We see that last two columns of the

3 table agree very well. This shows that the inverse technique outlined here can be used

to synthesize waveguides with prescribed TM modes.

I
I
I
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3 7. Discussions and Conclusions

3 We have developed a method based on inverse scattering theory that can be used to

design planar optical waveguides which transmit prescribed number of TM modes with

3 prescribed propagation constants. The results have been verified using finite difference

analysis. This procedure in conjunction with the technique for designing planar optical

waveguides for prescribed TE modes developed in references [4] and [5] provide the

3 complete inverse scattering procedure for designing planar optical waveguides with

prescribed propagation characteristics. However, it should be mentioned that only the

3 characteristics of one of the kinds of the modes (TE or TM) can be prescribed in a

waveguide as they are governed by two different differential equations.

One important question that should be answered when we fabricate actual waveguides

3 with refractive index profiles obtained using the technique described here is with what

precision the n(x) should be fabricated in order to provide the desired mode configuration.

3 To answer this question we have changed V(x) (V(x) is related to n(z) through Eq.

(30) ) uniformly over the spatial distance x by 1%, 5% and 10% and have computed

the corresponding change in the propagation constants for a typical single mode profile.

3 Figure 9 shows the plot of refractive index profile corresponding to a uniform change in

V(x) along x and Table IV provides the computed results of changes in the propagation

3 constant fP due to the uniform change in V(x) along x. We see that a change in AV/V

in the range of 1 to 5% does not affect significantly the mode characteristics of the

Iwavegnide.

3 It is also important to analyze the effect of the arbitrary constants A, on the shape

of the resultant refractive index profiles. Figure 10 shows the variation in the shape of

3 the refractive index due to changes in the choice of the constants {A. I n = 1,2, ...N}.

Our inference is that the shape is not very sensitive to the changes in the constants A,.

I
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3 The technique developed here may find application in designing waveguiding struc-

tures for spatial transmission of images and optical interconnections.
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I List of Figures

I
Fig. 1 The physical structure of inhomogeneous symmetrical planar optical

3 waveguide showing the reflection and transmission of

electromagnetic wave.

Fig. 2 The reconstructed refractive index profiles for the case of single

3 prescribed TM mode with f = 17.2 and various A1 values. - for

A 1 = 2 1 = 3.7386, - - - for A 1 = 0.4, and ... for Al = 7.

Fig. 3 The reconstructed refractive index profiles for the case of five

prescribed TM modes. - - - for A, = {1, 2,3,3,1}, - for A.

satisfying Eq. (36).

I Fig. 4 The potentials of a waveguide characterized by a three pole reflection

3 coefficients, -for a = 1.0, Cl = 0.8, c2 = 0.499 and --- for

a = 1.0, c1 = 0.05, C2 = 0.1.

I Fig. 5 Reconstructed refractive index profiles corresponding to the potentials

shown in Fig. 4. for a = 1.0, cl = 0.8, c2 = 0.499 and ---

for a = 1.0, cl = 0.05, c2 = 0.1.

3 Fig. • Planar optical waveguide showing grid points in the substrate, film

3 and cover.

Fig. 7 Dispersion characteristics of the reconstructed refractive index profile

shown in Fig. 3 by continuous line.

Fig. 8 Dispersion characteristics of the reconstructed refractive index profiles

shown in Fig. 5. - for a = 1.0, cl = 0.8, c2 = 0.499 and---

for a = 1.0, cl = 0.05, c2 = 0.1.
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I Fig. 9 Refractive index profile corresponding to a uniform change in V(x)

3 along x (- original profile, - - 1%. • 5%, -- - 10%).

Fig. 10 Refractive index profile (five modes) with change of values for the

I constants A,. - for A, satisfying Eq. (36). - - - for the case of

A 1, A2 and A3 increased by 10%, A 4 and As decreased by 10%,--.

for the case of A&, A2 and A3 decreased by 10%, A 4 and A5 increased

3 by 10%.
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I
Tab. 1 Mode spectra (3,y/ ko (TM) of the symmetric truncated parabolic index

I profile of A.+diffused waveguide with: n2 = 1.5125,

ni = 1.5991, A = 0.6328 pm and thickness d = 9.1400 pm obtained

by our finite difference method compared with the published results

I of Ref. [12]. N 2 is the number grid points in the core.

Tab. 2 Mode spectra ,9,r/ko (TM) of the symmetric truncated Gaussian index

profile of A+diffused waveguide with: n2 = 1.5125,

Unj = 1.6014, A = 0.6328 pm and thickness d = 9.1700 pm obtained

by our finite difference method compared with the published results

of Ref. [12]. N2 is the number grid points in the core.

I Tab. 3 Comparison of the prescribed TM mode spectra of various modes

3 used in reconstructing the refractive index of the planar waveguide

against the spectra obtained by the analysis.

I Tab. 4 Change in the propagation constant due to a uniform change in V(x)

along x.
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I Table 1

mode Oy/ko from /3y/ko by present method
Ref. [12] N2=84 N2=168

Iy
0 1.5966 1.5966 1.5966
1 1.5915 1.5915 1.5915
2 1.5864 1.5864 1.5864
3 1.5813 1.5813 1.5813

* 4 1.5762 1.5762 1.5762
5 1.5711 1.5711 1.5711

6 1.5659 1.5658 1.5659
7 1.5607 1.5604 1.5605

* 8 1.5556 1.5546 1.5548
9 1.5503 1.5498 1.5499

* 10 1.5451 1.5439 1.5443
11 1.5399 1.5387 1.5390

* 12 1.5346 1.5326 1.5336
13 1.5294 1.5288 1.5290

* 14 1.5241 1.5228 1.5231
15 1.5188 1.5139 1.5143
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Table 2

mode i37/ko from IPv/ko by present method
Ref. [12] N2=84 N2=168

0 1.5984 1.5984 1.5984
1 1.5925 1.5925 1.5925
2 1.5867 1.5868 1.5867
3 1.5811 1.5812 1.5811
4 1.5756 1.5757 1.5757
5 1.5702 1.5704 1.5703
6 1.5649 1.5651 1.5650
7 1.5596 1.5598 1.5596
8 1.5545 1.5542 1.5544
9 1.5494 1.5487 1.5490

* 10 1.5444 1.5424 1.5431
11 1.5395 1.5387 1.5390

* 12 1.5347 1.5341 1.5341
13 1.5297 1.5283 1.5284

* 14 1.5251 1.5220 1.5222
15 1.5204 1.5192 1.5195
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I Table 3

number of mode prescribed mode spectra fll/k, obtained by our

3 modes number P /./ko analysis

N=1 0 2.18997 2.18995

N=2 0 2.20556 2.20553

1 2.18417 2.18398

0 2.20926 2.20916

N=3 1 2.19140 2.19100

2 2.18061 2.18036

0 2.21288 2.21266

1 2.20003 2.19968

3 N=5 2 2.18998 2.18968

3 2.18278 2.182543 4 2.17845 2.17797

0 2.21466 2.21452

1 1 2.20473 2.20449

2 2.19630 2.19606

N=7 3 2.18927 2.18915

1 4 2.18397 2.18379

5 2.18010 2.179971 6 2.17778 2.17753
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I Table 4

I prescribed
effective effective index (B/ko) obtained by our analysis

indexI ~ ~~~(83/ko) __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

I -j =0% VIC = 1% -1 = 5% =10%3 2.18997 _____________ ______ ______

1 
2.18995 2.18998 2.19016 2.19024

I
I
I
I
I
I

I
I
I
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Synthesis of Guided Wave Optical Interconnects

5 Duncan W. Mills and Lakshman S. Tamil

5 Abstract

We have designed a guided wave optical intercoruect which reduces or eliminates dock

skew by ensuring simultaneous delivery of clock pulses to chips mounted on a wafer. The
interconnect consists of a multimode trunk waveguide and a set of branch waveguides, one per
chip, each of which couples one mode out of the trunk waveguide. The elimination of clock
skew is accomplished by taking advantage of the different group velocities of the modes inherent
in multimode waveguides and suitably tailoring the propagation constants of the trunk waveguide
according to the location of the respective chip on the wafer. Inverse scattering theory, specifically
the method of Darboux transformations, is employed to design the refractive index profiles ofg the trunk waveguides, using the set of propagation constants selected during the first stage of the
design, as input data. It is shown that by using transverse coupling -and suitable design of theI trunk and branch waveguides, efficient coupling from the trunk to the branch waveguides can be
ensured. Techniques for ensuring a symmetric. trunk refractive index profile are investigated.
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1. INTRODUCTION

5 High-speed computer circuitry requires the distribution of information and/or clock pulses

between various hardware elements within the system, including boards, chips, and logical

j elements within a chip. Ideally, the clock signals reach their intended destinations simultaneously,

but in practice, the exact arrival times are skewed since the clock signal emanates from a single

3 source to various locations distributed at different lengths from the clock source. In the past, a

number of techniques for reducing clock skew in standard VLSI systems consisting of metal or

£ polysilicon interconnects have been suggested. These include layouts composed of equal-4ength

lines[l], or breaking the chip into a blocks, each with an internally generated high-frequency

Sclock controlled by a low-frequency chipwide clock[2]. Aside from the fact that it is not always

practical to arrange circuit elements to meet these physical requirements, a large amount of metal

1i wiring is required to implement these schemes. The trend towards higher data rates, resulting

in skew which is a larger percentage of the clock pulse duration, has exacerbated the situation.

This paper presents a method for designing guided-wave optical interconnects with reduced clock

i skew, applicable in a chip-to-chip or intrachip situation.

The potential advantages offered by optical interconnections over standard wire or polysilicon

3 lines are discussed in a good review article[3], which suggests that optics can alleviate problems

stemming from resistive and capacitative loading in wire/poly lines, which is deleterious to the

3 signal amplitude and shape, particularly at higher frequencies.

In this paper, it is proposed that graded-index guided wave interconnects can effectively re-

duce clock skew by suitable design of the refractive index profile[4]. This design is accomplished

by properly tailoring the propagation constants of the guided modes to provide equal propagation

3 times to a set of detectors. The scheme presented in t.•spaper employs several optical channels,

each having a different refractive index profile. This includes a main multimode channel and

several single-mode waveguides coupled to the main line. Total system design takes into account

the problem of clock skew as well as efficient coupling between the trunk and branch waveguides.

3 Section 2 of this paper describes the relation between clock skew and the guided-mode

spectrum, followed by a description of the proposed optical interconnection layout. Section 3

3 provides the physical model of the optical waveguide used as the building block of the optical
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interconnect circuitry. The refractive index profile of the multimode guide is then carried out

3 using an efficient reconstruction algorithm which generates a refractive index profile based on

the guided mode spectrum and desired coupling characteristics between the main waveguide and

3 the single-mode guides. These are discussed in sections 4 and 5, respectively. Design examples

are provided in section 6, leading to conclusions in section 7.

2. OPTICAL INTERCONNECT CIRCUIT

5 The interconnect network is to be mounted on a GaAs wafer (10.16 cm.) in diameter, as

shown in Fig.l. The goal of the interconnect circuit is to deliver a pulse from the source to each

3 of the detector points on the wafer simultaneously. The circuit consists of N detectors or chips

at points P(1) ...P(N) connected by a network of integrated optical waveguides consisting of a

3 N-mode trunk line feeding N branches, which are generally of a different design from the trunk.

pulse impressed upon a given mode travels at the group velocity v., where

1 d#3 = ,w n

V9 Z (3ce2'

so that a pulse traverses a given length L in

(3 2L sec. (2)

1 Consider a clock pulse launched into the interconnect at point S. The time for a given mode to

propagate from S to a designated P(m) is

I =.w n2 L(") sec., m=1,..., (3)
Tm = 23m 2.

where L(m) is the distance from the source to P(.). •i is the propagation constant of the

mode delivering the signal to P(m).

For the purposes of this analysis, the important quantities are the total distances from the

3 source to the points P(m). Arranging these in order of increasing length,

LN > LN-I > .... > LI, (4)
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so that LN = max {L(')},L = mim {L(,)}, the points P(1) .... P(N) will be synchronized if

5 the propagation constants satisfy

/2 L2 /2P3 L 3  /6N LNv (5)

11 T13 ' T32LT2 3N~j-LN-1 (5

This provides us with a set of N propagation constants

I1 < 1 2 < ... <#3 N (6)

5 which must be supported as propagating modes within the interconnect. The propagation constants

themselves are restricted to the range

kIn2 < Pm < kom•., (7)

I where n,,• is the maximum core refractive index, and n2 the refractive index of the cladding.

The design of the interconnect circuit consists of two interrelated parts. The first concerns

the design of the refractive index profile for the multimode tnak waveguide, based upon the

spectrum generated in Eq.(5). The second involves the design of the branch waveguides, each

of which must efficiently couple off the appropriate mode from the trunk and deliver it to the

i designated point. This raises the issue of waveguide coupling. In sections 3 - 6, we illustrate

the application of inverse scattering theory to the related problems of refractive index profile

1 design and coupling.

1 3. WAVEGUIDE MODEL FOR OPTICAL INTERCONNECT

The waveguide model consists of a one-dimensional planar structure with graded-index core

3 n(x) and cladding layers of constant refractive index. n2. as shown in Fig.2[5].

With propagation taken along the z axis, the TE modes take the form

I E,(x) ei(wt-#z) (8)

3 where the electric field Ey(x) is given by

3d2 + [k~n2(x)1- 2 ]EY = 0. (9)
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I Rearrangement of the parameters by defining the transverse wavenumber k2 and the potential
i •X), k 2 = ko•• _ #2

(10)

brings Eq.(2) into the Schrodinger equation form,

dX2E

5 Here, ko = w/c is the free space wavenumber, P is the propagation constant, and c is the

velocity of light in vacuum. From these considerations it is clear that n2 represents the asymptotic

5 refractive index of the corresponding waveguide, provided

v(z) -+ 0 as jxl -+ +o0. (12)

The exact model for the waveguide is a channel geometry. However, for the sake of mathematical

3"simplicity, we consider the planar geometry with one transverse coordinate. For certain separable

refractive index profiles, the two-dimensional refractive index surface can be written in the

5 additive form[6],

I n2 (xZy) = n4 + n.2(z) + n.2 y), (13)

in which case the y-dependent portion of the refractive index can be designed using the results

of planar geometry, resulting in a complete design of n(z, y).

5 4. RECONSTRUCTION BY TRANSFORMS

Inverse scattering theory provides a framework whereby the potential of the Schrodinger

equation can be reconstructed from a set of eigenvalues selected a priori. Inverse reconstruction,

3 based on the solution of the Gelfand-Levitan integral equation, has recently been applied to the

design of monomode waveguides(51,[7]. In general, this technique is cumbersome when several

bound states are present. As an alternative, we will employ the method of transformations (known

variously as Darboux or Crum-Krein transformations[8],[9J) to obtain multimode potentials

3 suitable for refractive index design in optical interconnects.
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I For these purposes, it is useful to have a basic understanding of scattering parameters related

5 to the potentials of the Schdnlinger equation, which we assume to behave asymptotically as,

v(x) -+ 0, x --+ ±00. (14)

I A plane wave e+ik: incident on the potential from z = -co, will give rise to a reflected portion

3 taking the form,

r-r(k) e-ikx (15)

as x -- -oo, as well as a transmitted wave,

5 t (k) e+ik1  (16)

3 as Z 00 [10]. Similarly, the coefficients r+(k) and t+(k) can be defined, where it can be

shown that t+ (k) = t (k) - t(k). The Schrodinger equation then admits a pair of Jost solutions,

Sf+ (k, x) and f- (k, x), defined according to their asymptotic behavior:

fI(k, x)CFik =1 x -+ 4±00, (17)

The pairs {f+(k,x),f+(-k, x)} and {f_.(k,x),f_(-k,x)} comprise sets of linearly independent

3 solutions to the Schrodinger equation, allowing construction of the linear combinations in terms

of the transmission coefficient t(k) and the pair of reflection coefficients r+(k) and r_(k):

tf+k(k, x) =-L f-(-k, )( )- k f-.(k, x), (18)= k) r(k)

I and
1 _ r.f•(k)¢ kz.(9

f- (k,x ) = +--[(k) f+(-kX).-(19,

3 The scattering data, consisting of these scattering coefficients and the bound state eigen-

values,

1 km = iKm (KM > 0), (20)

along with the normalization constants, completely characterize the form of the potential. The

3 bound state wavefunctions are characterized by exponential decay for large IxI, and there is a
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I direct one-to-one correspondence between these bound states and the guided waveguide modes

5 characterized by a discrete spectrum of propagation constants

1 - W:7oQ- k•- o 'n +K•. (21)

It is clear from Eqs. (17)-(19) that the eigenvalues are poles of the transmission coefficient which

3 lie on the upper imaginary axis of the complex k plane and that the bound state wavefunctions.

which behave asymptotically as eT-:-1, are merely the Jost solutions evaluated at these poles:

I =i r r.) f= (in, T), (22)

5 from which follows the important relation.

3 r+(iI•) r(ir 1. (23)
t( ir•) t( ir-,n) =(3

A rather extensive derivation leads to alternative representations of the ratio of scattering

coefficients implied by Eq.(22), useful for quantifying waveguide coupling[ 11]:

2ik J +mf:F(k,x)v(x)efskx dx. (24)
| -00

Equation(5) provides a prescription for constructing a spectrum beginning with the highest

mode, #1I, whose value is arbitrary, subject only to the requirement #I > kon 2 , and building

upon it until the fundamental mode, characterized by #N, is added to the spectrum.

The transform procedure is a technique which allows for the construction of N - mode poten-

tials by specifying a priori a set of bound state eigenvalue, derived from the set {#13 ,1P2, ... ,13 v}

via Eq.(10):

1 km E {irq, ir2,...,iN}1, (25)

3 where

KN N-1 ... r-1 > 0. (26)
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I The following discussion does not constitute proof of the transformation method, for which

interested readers are referred to reference [9]. Rather, it outlines the practical steps necessary to

construct a particular class of potentials which suit the purposes of refractive index profile design.

In the method outlined here, we are adding the N bound states to some chosen initial

potential designated vD(z) which is assumed to contain no bound states. As additional input data,1 we require the explicit form of the Jost solutions /4(k, x) associated with vo(z).

Defining the N linear combinations of the Jost solutions as

I m, -- (-1)m+1 f(in,x) + P,. fi(i'sz) m = 1 .... N, (27)

3where Pm is an arbitrary positive definite parameter, the corresponding N- mode potential is

simply:
v N(z) -- vo(z) -- 2 ± Inl W(711 ... ,IN). (28)3 dz2

I In the above equation, the quantities W( denote Wronskians, i.e.,

71 72 7N

W(71,72,. . N) (29)

whose rows consist of functions Ti ...-yN differentiated with respect to z from zero to N - 13times. Equation(29) clearly illustrates the manner in which the N bound states are progressively

added in stages represented by rows and columns of the Wronskian.

SThe Jost solutions corresponding to the generated potential take the form

Sf+(k,X;N 
) N

S1 W (Tl,..., TN,fb(k, )) (30)
!H f_(kz; ) = - i W(-y1,..., TN)

1- (n. - ik)

Designating the scattering data for mv(x) as T(k),R+(k), the data pertaining to the potential3 constructed in the preceding algorithm is simply:
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t(k) = k + iK, k + iX2  k + i.cN T(k),Sk - iK k - ir.a k - iKN (31)
rd:k) (_)Nk + is~t k -+ ir2 k + ir-N R +(k),

r(k) 1 )N i k - i9i 2 k - i!N

clearly illustrating the presence of N poles representing the N bound states.

The normalization constants,

-- fC(k, xx)dz] Im{Res r+(kin)}, (32)

I L _J(k.mPZ)d.1 - Im{Res r.(k,.)},

which play a critical role in waveguide coupling, are related through the transmission coefficient:

I cd= -i es{t(k.)}. (33)

3 The normalization constants cq2 also transform in a controlled way as the potential is constructPd.

It can be shown that (see[9]),

Pm PM, (34)

I ~where Iwhe- ((-1)m-- t M )T(ir.)fl) m = 1,2,..,N. (35)

In effect, to every set of N 3-tuples

{vo(Z),Krm,pm} m=A1,...,N (36)

there corresponds a unique N- mode potential vN(z). In this paper, we will assume

So(X) = 0,
(37)I ft (k, x) = e•:skz,

1 with pertinent scattering data

(38)
TR(k) = 0.
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I To demonstrate the procedure used here, we have used three sets of data shown in Table 1,

and have reconstructed the refractive index profiles shown in Figs.(3)-(5). Unless otherwise

indicated, we assume

142 = 3.0
A = 0.9 sm, (

3 throughout this paper. In Fig.3, the eigenvalues are equally spaced and all pm = 1. The resulting

refractive index profile is symmetric about the origin and provides a smooth single channel.

3 If near-degeneracies are introduced into the spectrum, splits will occur in the refractive index

profile. The nature and extent of the splits will depend upon the nmber of modes involved.

3 This is illustrated in Fig.4, where we introduce a quasi-degeneracy across the entire spectrum,

causing the expected split of the refractive index profile into five channels. The profile remains

symmetric about the origin. When the original spectrum is restored, but one or more of the

{p.mIm = 1,2,..., N} deviate from unity (Fig.(5)), the result is a splitting despite the wide

I spacing of the eigenvalues.

This example illustrates the application of the reconstruction procedure to typical spectra

compatible with GaAs technology, with resulting refractive index profiles which are symmetric

3 and well-behaved. It is clear from our analysis that a material such as AlGaAs [12], with

a large variation in refractive index as a function of mole fraction, is well suited to the

3 proposed interconnect since it allows for a relatively large spread of propagation constants, and

consequently, greater flexibility in placement of chips on the wafer.

5 As a check of our algorithm, one hundred data points representing the value of the refractive

index profile shown in Fig.3 were used as input to a finite-difference algorithm, solving Eq.(9),

3 whose output consisted of the corresponding five propagation constants. Results of this direct

solution are given in the second column of Table 2, showing excellent agreement with the exact

3 propagation constants.

Completion of the optical interconnect problem involves design of the branch waveguides.

3 In the next section we discuss transverse coupling between the trunk and arms, and show how

the parameter p, can be adjusted to provide the desired coupling characteristics.
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3 5. COUPLING TO BRANCHES

3 Efficient power transfer from the trunk to each branch can be accomplished by transverse

coupling which will occur over the interaction length represented in Fig.1 by the short spans

3 along which the branches are parallel to the trunk waveguide. The analytical approach used here

is based upon the standard perturbation technique, under an assumption of weak coupling[13].

3 The novelty of our analysis lies in relating the scattering analysis of the previous section to the

calculation of transverse coupling coefficients derived from coupled mode theory.

3 Figure 6 shows two neighboring (non-ovedapping) waveguides, each of which is assumed to

have a graded-index core with refractive index profiles nL(z) and nR(z), respectively. We will

3 assume that each waveguide separately supports y- polarized TE modal fields EL(X) and ER(z)

with propagation constants fL and P5 R. respectively. The interaction between the two fields will

I be represented by a z- dependent linear combination of the individual waveguide modes:

3 C(z, z, t) = A(z) ER(z)ei((4-#nz) + B(z) EL(z)ei(w•#Lz), (40)

where the exact form of the z- dependent weighting coefficients A(z) and B(z) are to be

determined. We will assume that the coupling is weak, i.e.,

&2A(z) dA<z d2R' I JB(z)l << 1,0 B(z)l (41)

dz2  I dz I dz2  dz

3The interaction between the waveguides is represented by first-order differential equations:

dA(z) -i xRL B(z) e-i(PL-/iR)z, (42)

dz

and3 dB(z) A(z) e•A&-A,)Z. (43)
dz =i L

The coupling coefficients,

,KRL -{ 21 --3 n } (44)

and 

2RR

3 KLR {2fLRu} (45)
*20LNLL
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S

I are defined in terms of the various integrals
I +00

NRR =- +E(x) dx,

-+0 
(46)IRL--f ERWx VR(T) EL(-) dx,

U and 
-00

3NLL~ J E 2(x) dx
+00 (47)
+00

3 ILR- EL(J ) vL(x)Et(x)dx
-003 The coupling coefficients may be written in terms of the scattering data as follows. Let the model

consist of two waveguides described by potentials VL(x) and vR(z). For the purposes of the3 analysis, let us shift VL(z) in the negative x direction by an amount a so that

ER(x) = fR_(i., x)

IEL(z)-- f•(inx +.S)
(48)3 )(x) = k [(n - R(Z)]

vL(x +s)= k [ - n,(X)]-

3 This form of the fields was chosen so that they have the simple asymptotic forms

ER(-)-+ e" as x -- -oo,S~(49)

EL(X) 
as exe -as oo. 

(49)

The separation s is arbitrary, subject only to the condition that the potentials do not overlap to

any large extent.

3 In the region comprising vR(x), EL(x), the field of the lefthand potential taken alone, takes

the simple form,

I EL(X) =: ik(-+s) k=i, (50)
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U enabling the interaction integral to be written as

IRL3 +00
= e-" J f R(k, x)ek dzV(=),

-00

e's +OOR () X ,)VR(Z)ikx d.xlk (51)

=- • R"(iK) rR(i,)
--2K e' tR(i,,) tR(id,)

where we have used Eqs.(22), (23) and (24). The coupling coefficients now take the explicit form

-L e-td, , = -!" C gs IMfR e$ { R• ,_(i,,) .(52)
X RL= -K d PK

I Similarly, 
20R = 

R e

KLR = 2'R -K e- 2  = .- u- Res ,, ) }.iKc (53)2 f3 L NLL 1L Cm IL+ 'j

It is clear that the coupling coefficients consist of two parts: a factor depending only upon

3 spectral information and waveguide separation, and a (more interes•ng) contribution from the

normalization integral which is dependent upon the actual geometry of the potential. To highlight

5 this, we will refer to the normalization constants as shape factors, denoted

3 F - Im {Res -(ik)}. (54)

It is clear from simple integration of Eqs.(42) and (43) that significant amounts of power can

5 only be exchanged under conditions of phase matching,

A =OL = #1R (55)

For the purposes of the optical interconnect circuit, assume that the right-hand waveguide, with

amplitude A(z) represents the single-mode branch. Assuming the branch to begin at some distance

z = zD along the trunk, so that A(zD) = 0, the coupled-mode equations have the solutions[14]U
A(z) = - B(zo) sin AA, zXLn (56)

B(z) = B(zo) cos A#,z,
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U where

3 A/& = VIZL LR. (57)

From Eqs.(56) and (40) it is clear that the field of the composite trunk/branch waveguide closely

3 approximates a two-mode system with propagation constants

P(-) =P - A• .I (8

Under conditions of complete power transfer, i.e.,,I
XRL• = XLR, (59)

complete power exchange occurs at intervals of

I zL~ sL T m = 1,3,5,... (60)

3 measured from Za along the branch waveguide. Maximum power transfer is generally ensured

by employing identical waveguides (not a viable option in our application), but it is clear from

IEqs.(53) and (52) that equal coupling coefficients can be ensured by suitable manipulation of

the normalization constants of the various mink waveguide modes and the corresponding branch

I modes. For branches placed to the fight of the trunk, this amounts to

nC2(trunk) =-d2(sranc); m = 1.... N. (61)

3 Consequently, we will select a set of single mode bradhes, calculate d2(banch) and suitably

tailor the trunk waveguide, using Eq.(28) and selecting appropriate values of Pm based upon3 Eq.(61). In the next section, we consider various sets of branches and carry out the trunk design

in accordance with these concepts.

I
I
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U 6. DESIGN EXAMPLES

3 The design process consists of selecting suitable single-mode branches, calculating their

shape factors, and designing the trunk refractive index profile for maximum power transfer.

3 Denoting the branch shape factors by 12), this design process imposes a condition on the trunk

through p'.:

PM= 2n,. Pm (62)

which follows directly from Eq.(34) and Eq.(61). It is clear that the p. act as the critical parameter

in matching waveguides for maximum power transfer. We emphasize that Eq.(62) is a condition

3 freely imposed upon the Pm based on the mode spectrum and the form of the branch waveguides.

At this point, the goal of the analysis is to determine to what extent it is possible to provide

3 maximum coupling between the branch and the trunk while adjusting the design parameters in

such a way that the refractive index profiles are reasonably well-behaved.

3A smooth, symmetric trunk refractive index profile is clearly preferable to one with random

variations and large gradients. Using the same mode spectrum employed to generate Figs. 3-5,

3 we have determined that a step-index branch design is sufficiently flexible to achieve attractive

profiles for the trunk waveguide, while maintaining conditions of maximum power coupling. This

3 is an encouraging result, as step-index waveguides are easy to fabricate. In all cases considered,

n2 = 3.0, at a wavelength of 0.9 M.m.

I The step-index waveguide has been analyzed using standard methods (see [13]). Thie purpose

of the following analysis is to put the step-index waveguide into the context of inverse scattering

theory and to demonstrate its usefulness in the proposed interconnect. Consider a square well

potential of width D - 2d:

=k2 (n2-n2) (-d<x<d) (63)

= 0 elsewhere,

whose corresponding refractive index profile is a step-index planar waveguide with constant core

refractive index n,. Defining the parameter

3= 6k2 - Q{II f} k2 ?02 , (ý)
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I we can write the Jost solutions and their derivatives for square well potential as

f_(k,x) = a.(k) sinKx + a,(k)cosKx

f_(k, x) = Ka.(k) cos Kx - Ka,(k) sinKx,

3and f+(k, x) = b.(k) sin Kx + b0(k) cosKx

(66)
f f(k, x) = Kb.(k)cos Kx - Kbc(k)sinKz.

In addition, for x < -d,

f_.(k,x) =-ikx

(67)f-'(k, x) = ik (67)x

3 and for x> d,

f+(k,) =x
I (68)

f+'(k, x) = ik ei"-, (8

i Continuity of the Jost solutions and their derivatives at these boundaries gives the coefficients:

a'(k) = -ekl{KsinKd + ik cosKd}
K

a e(k) =eid I{KcosKd - ik cosKd}
K '(69)

3b.(k) = -a.(k),

b,(k) = a.(k).

3 From the first of these, it is clear that the eigenvalue equation for the even modes is

tan Kd = -ik (70)

The reflection coefficient[15],I ______ .___

_(0) W [f+ (k, x),/_(- kX) (71)
W[f_(k,x),f+(k,x)] '

I follows in a straightforward way. Since,

3 W[f_(k,x),f+(k,x)]

= K (b,(k)ac(k) - a.(k)bc(k)) (72)

3 = 2K b,(k)ac(k),
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I and
W[f-(-k,x),f+(k,x)j = 2K (b.a,(-k) - a.(-k)bc (73)

it follows that

= a1(-k)b (k) - b.(k)a,(-k)2b.(k)a,(k) '(4

Sclearly illustrating how the pole locations are the respective even and odd mode eigenvalue

equations. We are interested in the fundamental mode with eigenvalue k, = ir.1, for which the

3 residue is given by

4b) R e12ikd Ktan Kd - ik (75)
=Res jr-(ix)j 2 d{K tanKd + ik} .

This expression can be simplified so that the expression for the coupling coefficient takes the

form

IKRL I2Qk e-# ed, (76)I Pl - (1 + r.,d) k02(OIL - ,T) " '

in exact agreement with the result obtained using the standard method[16].

3 Consider a set of branches consisting of five square wells of width {DmIm = 1,2, ...,5}, and

constant core refractive index {n -m =1,2,...,m With the eigenvalue spectrum preselected,

3 the design procedure amounts to a selection of branch core widths and core refractive indices

which allow single-mode operation. Since /P2 = k2nj + rd., and 2ik2 - P.2> 0, the minimum

3 core refractive index is

* ~~minnm}= (kr+ K) (77)

Requiring the core width to be at least one wavelength nominally gives

min{Dm} = 114m. (78)I
3 Table 3 lists the results of three sets of design data, beginning with a set of branches each

1 pim in width, their corresponding core refractive indices, chosen so as to satisfy the eigenvalue

3 equation for this width, and, in the last column, the corresponding values of p,,,. Figure 7 shows
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U the resulting refractive index profile. In the second set, a similar pattern was followed, but for

larger core widths, and the resulting trunk refractive index profile is plotted in Fig.8. Comparison

with the previous result shows a greater shift of the profile in the positive x direction, due mainly

to dethreethrePm which are less than unity, in contrast to the first case, where all p.. > 1. Both

trunks exhibit rather large index gradients, but are otherwise well behaved.

3 The third case is the most interesting. It is clear from earlier discussions that if we choose

Pm • 1 (79)

for all branch waveguides, a smooth, symmetric trunk refractive index profile will result. Since

3 laser diodes emit even and odd field configurations, a symmetric trunk refractive index profile,

allowing for even and odd guided modes, will result in more efficient coupling between the

3 source and the trunk waveguide. In a somewhat tedious but effective analysis, whose objective

was to satisfy Eq.(79) for all m, we began by plotting a given p. (Eq.(62)) versus n4m) and Dn.

U Empirically, it was found that the pair that satisfied the eigenvalue equation and the condition

Pm = 1 lay in the vicinity of min{ni }, enabling one to narrow down the range of D, values. A

I trial value of Dn was then selected, the corresponding n(in) found from the eigenvalue equation.
Using this pair (Dm+ni")), pm was then checked for its proximity to unity. We were satisfied

to come within 3% of Pm= 1. If required, the procedure can be repeated until Pm is sufficiently

close to any desired value.

It bears repeating that setting Pm = 1 for all modes merely guarantees a symmetric trunk

5 refractive index profile. The smoothness of the profile will also depend upon the spectrum of

propagation constants, as we have seen in Figs.3-5. In fact, the smoothness of the refractive index

3 profile shown in Fig.3 is a direct consequence of the riatively equal spacing of the propagation

constants. The more general question of creating a single, smooth guiding region for an arbitrary

3 set of eigenvalues and normalization constants is considered in Ref.(7]. It is evident from our

results, however, that the parameters governing the step-index branch waveguides are sufficiently

U flexible to couple to a large number of possible trunk waveguides designed using Darboux

transformations.

U
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* 7. CONCLUSIONS

3 Guided wave optical interconnects consisting of graded index optical waveguides were

designed. It was possible to design an interconnect consisting of a multimode trunk waveguide

3 coupled to several single mode branch waveguides, each of which delivers a selected mode to a

detector, and by exploiting the group velocity dispersion inherent in multimode waveguides, it

5 was possible to select a set of propagation constants such that each of the modes can be delivered

to its assigned detector simultaneously, eliminating clock skew.

The sInthesis of waveguides with prescribed propagation constants is the key to the design of

this interconnect. Consequently, an inverse scattering algorithm was required to reconstruct the

3 refractive index profile which would support guided modes with this preselected spectrum. It was

determined that the method of transformations provided a flexible, efficient means of generating

3 the multimode trunk refractive index profiles suited to our use. These profiles are continuous and

decay rapidly in the transverse direction, making them well-suited to practical systems.

I By manipulating the normalization constants, it was possible to take full advantage of the

possibilities of the transformation method. In particular, it was possible to efficiently couple the

trunk waveguide and each of the branch waveguides, despite the fact that the trunk and branches

consisted, in general, of different refractive index profiles. This analysis resulted in a formulation

of waveguide coupling coefficients in terms of the scattering data pertaining to the corresponding

potentials. It is emphasized that this formulation is completely general and applicable to any

waveguide systems in which the weak coupling approximation is valid.

3 In addition, it was found that proper manipulation of the normalization constants guaranteed

trunk refractive index profiles which were symmetric and, under certain circumstances, free from

3 large index gradients.

Directions for future work include analyzing the sensitivity of the refractive index profiles

to variations in the propagation constants, and an in-depth analysis of allowed variations in chip

placement within the prescribed wafer area.

I
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U 13(Xkofl2),Pm, Figure 3 Fig=re4 Figure 5

/35, PJ5  11.09752, 1 1.05 169, 1 1.09752, 547

94 41.07611. 1 1.05269, 1 1.07611, 0.003

P33, P3 1.05369, 1 1.05369, 1 1.05369, 0.01

1 /2, P2 1.03202.,1 1.05469, 1 1.03202, 96

fi I1.01034,.1 1.05459, 1 1.01034, 235

I Table 1. Data characterizing the refractive index profiles of Figs.3-5.
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U SMOOTH PROFILE, (Figure 3), Direct method comparison

(3,m (xkon 2) (3m (x kon 2), direct method

1.09752 1.09752

1.07611 1.07614

I 1.05369 1.05377

1.03202 1.03218

3 1.01034 1.01054

Table 2. Propagation constants for smooth profile. Second column3gives results of finite difference method applied to potential in Fig.3.

I
I
I

I

II4

I
I
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I STEP INDEX BRANCH DATA

P. (xko n2) d (=D/2), jim nPm

Fig.7

1.09752 0.5 3.31 30.77

3 1.07611 0.5 3.25 99.81

1.05369 0.5 3.18 107.95

1.3202 0.5 3.11 7.83

1.01034 0.5 3.04 8.83U Fig.8

1.09752 1.0 3.30 5.89

1.07611 1.0 3.23 2.26

1.05369 1.0 3.17 0.54.

1.3202 1.0 3.10 0.01

1.01034 1.0 3.03 0.003

Fig.3, approx.

1.09752 0.648 3.30613 1.00901

1.07611 0.664 3.24113 1.00456

I 1.05369 0.947 3.16782 0.984028

1.03202 1.1 3.10102 0.97903

3 1.01034 1.4 3.03384 1.00375

Table 3. Data for step-index branches corresponding to trunks in Figs.7, 8, and 3.

I
I

I
I
I
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Figure Captions

1 1. The optical interconnect. Refractive index profiles are designed so that a pulse launched

from point S reaches each of the points P(l)...P(N) simultaneously.

2. One dimensional planar waveguide with variable core refractive index n(x) surrounded by

cladding layers of constant refractive index n2.

3. The smooth, symmetric trunk refractive index profile resulting from evenly spaced eigen-

values and pm = 1 for all m.

4. Trunk refractive index profile resulting from five-fold near degeneracy. Symmetry is retained

since pm= 1 for all m.

5. Thunk refractive index profile with same spectrum as in Fig.3. The pm are varied as indicated

3 in Table 1.

6. Weakly-coupled waveguides used to model the coupling interaction.

7. Trunk refractive index profile for step index branch waveguides of width 1 prm.

8. Trunk refractive index profile for step index branch waveguides of width 2 pnm.

I
I
I
I

I
I
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I Abstract

Within the context of weak coupling theory, we derive representations of the coupling
coefficients between neighboring waveguides by representing the field-dependent inter-
action integrals by algebraic expressions involving scattering data and we illustrate the
contexts in which scattering theory can make a viable alternative to existing formulation
of the waveguide coupling problem.
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I L Introduction

Coupling between waveguides in a multilayer structure is the cornerstone of optical

spatial switching. This form of coupling, which arises when the evanescent fields of
one waveguide perturb its neighbor, can be analyzed by several methods. Traditionally,5 the most popular approaches have been a weak coupling perturbation analysis[l] or the
analysis of local normal modes[2]. The problem continues to generate considerable in-
terest, as evidenced by recent work formulating variational methods and finite-difference
schemes[31. The results presented in this paper were motivated by our recent interest
in analysis of optical waveguides using scattering data (i.e., eigenvalues of the bound
modes, reflection and transmission coefficients).

Specifically, this paper shows that the traditional weak-coupling analysis of interact-
ing waveguides can be reformulated in the language of scattering theory. We show that5 the coupling coefficients describing the interaction of two neighboring waveguides have
straightforward representations in terms of their scattering data, eliminating the need to
explicitly calculate the field-dependent interaction integrals by representing these inte-
grals with straightforward algebraic expressions involving the guided-mode propagation
constant and the residue of the reflection coefficient. In this paper no attempt is made to
reformulate the mathematics of scattering theory, but rather to identify existing aspects
this theory which are useful when applying transverse coupling to waveguide design,
and illustrating the contexts in which scattering theory can make a viable alternative to5 existing methods.

II. Waveguide Model

Figure 1 shows a planar waveguide consisting of two coupled graded-index (GRIN)
guiding regions. For the moment, consider a single planar graded-index waveguide

consisting of an inhomogeneous core with a varying refractive index n(x), surrounded
by two cladding layers of constant refractive index n 2. To simplify the analysis we
assume that each guiding region is infinite in the y direction and supports a single y-
polarized TE mode of the form

3 E 1 (x,z,t) - EV(x) eifze-iWt , (I)

where z is the direction of propagation, w is the frequency, 3 the longitudinal propagation
constant. It has been assumed that the waveguide is infinite in extent along the y
axis Here, k0 is the free space wavenumber. The field E,(x) is defined by the scalar
differential equationI d2 4y(x)

d2 W+ [k2 12(X) _ p2] Ey(x) = 0. (2)
Idx2
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I This equation can take the form of a Schrodinger equation which is particularly well
suited to analysis using scattering data. Defining the complex transverse propagation5 constant k (-= kr + i ki) as

k2 = k2 n 2 _2 (3)

brings Eq.(2) into the Schrodinger form

d2 E- + [k 2 - v(x)] E. = 0 (4)
dX2±

3 whose potential

v(x) = kO2[n2 - n2 (X)] (5)

I varies across the waveguide core and vanishes in the cladding. Equation (5) clearly
illustrates how the depth of the potential may be varied either by changing the wavelength,I altering the refractive index profile, or both. In this scheme the mode cutoff condition,
/ = kon 2 , is obtained when

I k = 0. (6)

The discrete set of guided modes, characterized by k0n2 < P < konj, or equivalently by

0 < Im k < Im (ko n-n3 ), is represented by points along the positive imaginary

axis of the complex k plane. In scattering theory, the guided modes are termed bound
states, distinguished by their discrete eigenvalues k. As the fundamental mode of a
planar waveguide is TE, Eq.(4) is sufficient to describe the bound mode in a single-mode5 waveguide.

A. Scattering Coefficients and Jost Solutions Scattering theory (direct and inverse) is
concerned with the relationship between a Schrodinger potential v(x) and its associated
scattering data (i.e., reflection and transmission coefficients). A plane wave e+ik' incident
on the potential from x -00, will give rise to a reflected portion taking the form,

r_((k) e-ikx (7)

5 as x --- -0, as well as a transmitted wave,

aot_(k) e+ikx (8)

as x -- o. An alternative viewpoint is provided by the coefficients r+(k) and t+(k)
which define relected and transmitted portions of a plane wave incident from x = +oo.
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I The Schrodinger equation admits a pair of Jost solutions, denoted "f+(k, x) and
f_(k, x), defined according to their asymptotic behavior:

lim f+(k,x)e-ik, = lirn f(k,x)e+ik, = 1. (9)
x - --+ X - - 0-

IThe pairs {f+(k,x),f+(-k,x)} and {f_(k,x),f_(-k,x)} comprise sets of linearly
independent solutions to the Schrodinger equation, allowing construction of the linear5 combinations[4]:

f±(k,x) = (-kx) + 1 T (k) f (k,x), (10)

The Wronskian, defined as Wj[f, g] =- f g' - g f', (the prime denoting differentiation with
respect to the coordinate), provides a set of relations,

2ik 2ik~~~ -_k =+( Wt[f_(k, x), f+ (k, x)], (1

so that tL(k) = t+(k) - t(k), a result which is a direct consequence of the asymptotic
behavior stipulated in Eq.(1.2). In addition,

r±(k) :FW[f(k,x),f(-k,x)], (12)
2 t(k)

follow from Eqs.(10) and (11).
During the course of this analysis, it is useful to shift potentials along the axis. The

scattering data changes in a controlled way under a shift. Consider a potential v(x) with
Jost solutions denoted ft(k, x) and corresponding scattering data r±(k), t(k). It is clear5 that the shifted potential v(x - d) has a Jost solution of the form

f+(k,x) = eikd f+(k, x - d). (13)

1 Using an overbar to denote the scattering coefficients of the shifted potential, it can be
shown that the reflection coefficients associated with the translated potential are related£ to the original data by a simple phase shift.

3_(k) e+2ikd r_(k), (14)f+k e-2ikdr()

while the transmission coefficient is unaltered:

i(k) = t(k). (15)

8
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I B. Guided Modes
At values of k (Z ia) such that

t(k) 0; (16)

1 that is, the bound state eigenvalues correspond to the poles of t(k) which lie on the
positive Im k axis. The Jost solutions exhibit the asymptotic behavior

E bound (X) - e:Fax, X -+ +00 (a > 0), (17)

3 This implies

rCia)f+ia, X) _i) f(ia, X),
t_(Za)(18)

r+(ia)
f-(ia, X) -() f+(ia, x),

1 resulting in the following useful relation:

r_(ia) r+(ia) - (19)

3 The corresponding normalized guided mode fields are then

Ebound(x) = c+ f+(ia, x) =- c- f_(ia, x), (20)

where the c± are arbitrary constants. There is a one-to-one correspondence between the
bound states of the quantum mechanics picture and these guided modes, and we will use5 these terms interchangeably.

£ IIM. Transverse Coupling

In this section we review the salient features of waveguide interactions in the weak
coupling approximation and reformulate the problem in terms of scattering data.

Figure 2 shows two neighboring (non-overlapping) potentials, separated by a distance

s =dR - dL. (dL < 0) (21)

Each waveguide is assumed to have a graded-index core with refractive index profiles
n f L (X ) and n R (X ): 2(X ) n ± A n(X )

•(X) n 2• + A12(X).3 n•(x) =n• + An•(x). (22)
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I We will assume that each waveguide separately supports y- polarized TE modal fields
EL(X) and ER(x) with propagation constants [3L and OR, respectively. The interaction
between the two fields will be represented by a z- dependent linear combination of the
individual waveguide modes:

3E(x, z, t) = A(z) ER(X)e'(w-"Rz) + B(z) EL(X)ei(wi-PLz), (23)

the exact form of the z- dependent weighting coefficients A(z) and B(z) being a function
of the interaction strength induced by the transverse coupling. The governing equation
for the field in Eq.(23),

I 02g 02£ w2

Oz2 + -2 + .2 n2(x)E = 0, (24)

where n 2(X) is the refractive index of the composite structure,

n 2(x) = n2 + An2(x) + An2(X), (25)

dictates the coupling analysis which carries with it three explicit assumptions:
i) Each waveguide individually supports single mode with propagation constants (L

and OR.

ii) The coupling is weak, i.e.,

Id2Aj Ia A dBdBSdd-•~~~2 << JOR 1"I•z-[ ~ << JOn L (26)

I ~ ~dz II"dz7 -dpz- « dJ(6

5 and iii),

--00 +00

3 ]EL(x) EL(x) dx < J EL,R(X) dx. (27)

-00 -00

SIgnoring the second derivatives of A(z) and B(z) the wave equation reduces to a set

of coupled first-order differential equation for the z-dependent coefficients:

dA
dz -L B(z) e"i(#L-LR)Z + i KRRA(z),dz (28)
dB--
dB i KLR A(z) e'(PL-fR)Z + i nLL B(z).

where the coupling coefficients

_ 'RLIKRL - 20RNRR (29)

IRRI KRR = 2/)RNRR'
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I are functions of the interaction and normalization integrals:

+00

IRL I ER(x) VR(x) EL(x) dx

-00

IRR = [ ER() VR(X) ER() dx (30)
-00

+00

NRR f 2 (x) dx.I -00J

The coefficients 'KLR and KLL follow by interchanging L and R. The self coupling
coefficients ICLL and ICRR represent small corrections to the propagation constants and
are usually ignored.

In the phase matched case (/OL = [OR [0), the solutions to Eq.(28) are

A(z) = Az)cosA[3 z + jiCR Bo } (31
IfARz(3KLR

B(z) = B(zo)cosAf z+ -iRA(zo) sinA# z

3 where
A#• =- Vr/RL KLR •(32)

3 Given the initial condition A(zo) = 0, the solutions become

A(z) = i B(zo) sinAfl z

B(z) = B(zo) cosALf z,

provided
3 KRL = tLR = K, (34)

so that complete power transfer occurs at intervals of (7r/2) A#4 along the coupled length
of the waveguides. Substituting these expressions for A(z) and B(z) into Eq.(23)
indicates that the total electric field consists of an approximate linear superposition of
modes with propagation constants,

+3+ AO (35)

I The interaction and normalization integrals are the principal calculational hurdle
associated with the weak coupling model. The latter, as previously shown, have a
convenient representa:ion in terms of the scattering data. In the next paragraphs we
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I outline established scattering relationships which are useful in representing the interaction
integrals.

Consider two different potentials v(x) and fi(x) (These are not, in general, the
potentials describing the two individual waveguides) [4]. In the limit as x -+ -00,
it follows that

Wif+(k,x),f+(k,x)i - [rt(k)(k)_ - (36)L2i

I while in the limit as x -- oo, this Wronskian vanishes since f+(k, x) - f+(k, x) -s e'ý'.
Now consider the derivative,

d dW[f+(kx), +(kx)] = [iý(x) - v(x)] f+(k, x)f-i(k, x). (37)

5 Integrating this expression yields

+cc

I I+' [f+(k, x), 1+(k, x)]dx = -W [f+(k, x), 1+(k, x)] I,_0 (38)-- O0

providing a convenient integral relation for the Wronskian:

+00

+- f(k kx 2ik dr_(k) - F_(k)]. (39)J[v(x) - v!(x)] +( ,(k)i

-00

Using similar steps, a companion expression can be derived:

+00

[v(x) - J(x)I f-(k,x)f_(k,x) dx = ik [r+(k) - F+(k)]. (40)

-00

If i(x) = 0, Eqs.(39) and (40) reduce to the useful form,

f-(k, x) v(x) e±kz dx = rT-(k). (41)

1 -00

Writing the guided mode electric fields of the right- and left-hand waveguides in3 terms of the Jost solutions for the respective potentials v°R(x) and v°%(x) gives

ER(X) - fR(ia, x - dR) (42)3 EL(Xz:) OL(iar - dL),
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I where a bound state with eigenvalue k = la (a > 0) is assumed. With the help of
Eqs.(19) and (41) we find:

-aI +00

ILR = e- J f+OL(k, x - dL) VL(X)e-ikzdx=I..k = -2a -as, (43)

I -00

1 The normalization integral.NLL is simply,

+00

NLL = [fL(ia,x - dL)2 dx = r+L(ia), (44)

--00

*Defining the shape factors

I FL Im {Resr-+(ia)} (45

F4L Im {Res r+Lia)}

gives
ILR -a -a L

N L R - e~aS F+ (46)tL--2[3 NLL --

3 and by the same token,

K RL -- e= FR. (47)

-2 3 NRR = -7

These results indicate that when placed in the context of scattering theory, the directional
coupling coefficients take on a particularly simple form consisting of a portion which
is dependent solely upon the eigenvalue and the waveguide separation, multiplied by a
factor whose value is dependent upon the inherent shape of the potential. The condition5 for complete power transfer takes the particularly simple form,

FL - (48)

5 One form of this condition, which is likely to be encountered in practice, is simply

r r-(k) = r +(k), (49)

which implies

I VL(X) = IR(-x), (50)

and the intuitively appealing conclusion that a waveguide is coupled with 100% efficiency3 to its "mirror image".
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l IV. Design Examples

5 A. Step-Index Waveguides

Coupling in step-index waveguides has been analyzed using standard methods (see
[5]), therefore, it can serve as a check for the coupled mode formalism we have derived.
Consider a square well potential of width D = 2d0 :

v(X) = k°• (n2 n) (-do < x < do) (51)
0 elsewhere,

whose corresponding refractive index profile is a step-index planar waveguide with
constant core refractive index ni. Defining the parameter

2 2 2 - (523= Vk - k02(n2 - n1} - 1~~-f2  (52)

we can write the Jost solutions for square well potential as

f_(k,x) = a3(k) sin Kx + a(k) cosKx (-do • x < do) (53)
e-ikx (x < -do),I and

bs(k) sin Kx + bc(k) cosKx (-do _ x _< do) (54)
e+ikx (x> do).

Continuity of the Jost solutions and their derivatives at these boundaries gives the

coefficients: -k

a,(k) = -e I sinKdo +'kcosKdo}
K

a'(k) eikdo { KcosKdo - ik sinKdo} (55)
b8(k) = -a 8 (k),

1 b,(k) = a.,(k).

The reflection coefficient (from Eqs.(l I and (12)),follows in a straightforward way:

r(k) = as(-k)bc(k) - bs(k)ac(-k) (56)

2bs(k)a,(k)

3 whose pole locations lead to the familiar eigenvalue equations{-ik (even))
I tan Kdo = (57)K (7

k (odd)
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This result is applicable to both single- and multimode waveguides. We are interested in
the fundamental mode with eigenvalue k, = ia, for which the residue is given by

Res {r_(ia)}= I-e- 2 kdo Ktan Kdo - ik lk=ia- (58)
2 TI{K tanKdo + ik}I

I With the help of the Eqs.(47) and (57), the coupling coefficient takes the form

K 2 a 2  e-as e2ado (59)!!_ IK•RLL=
S6(l + ad) k2,(n - n2)

in exact agreement with the result obtained using the standard method[5].

B. Depressed Cladding Waveguides
The foregoing result puts scattering theory in direct contact with established results,I but provides little motivation to apply scattering theory as opposed to the conventional

techniques, due largely to the fact that the guided-mode fields have straightforward
representations and the interaction and normalization integrals can be readily calculated.
As refractive index profiles become more complicated, the need for an alternative method
becomes more compelling. Jordan and Lakshmanasamy[6] designed high V-number5 single-mode planar waveguides using a rational reflection coefficient of the form

- k, k2 k3  (60)3 r.._.(k)= (k-ki)(k - k2)(k - k3)'

which yields a single bound mode eigenvalue at k3 = ia, and two poles kl = -C - iC2

and k1= cI - ic2 in the lower half of the complex Iplane which represent tunneling leaky
waves. The authors showed that the Gelfand-Levitan reconstruction technique results in
a corresponding potential

I rda 11T
v(x) = 2 1dx _ a(x)A-'(x)A'(x) A-'(x)-T' (61)

where a and -y are the row vectors

a = [1 x e ' e-'?" e'n2 e- 712] (62)

U -y=[0 0 0 0 0 -a(c4+ )],

and A(x) is a 6 x 6 matrix whose elements are listed in Appendix 1. The parameters3 are defined,

11 = [(a + p)121 /2

1 12 = [(ar- p)/21/2 (63)•, 2c 2 -2c2 (63)3 p = - 4C2)(a 2 + 4C2)1/2.
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I

- Some restrictions apply to the relative location of the poles a, c, and c2 brought about
by requiring a real potential. Specifically,

0 < C2 < (64)

I- places a lower bound on c2 and

Sr > p (65)

etches an upper limit on cl and c2. This condition is identical to the one derived in [6]
based upon the conservation of energy condition,

3 Ir(k)12 < 1 all Re k. (66)

Each of the three refractive index profiles illustrated in Fig.3 propagates a single mode1 with propagation constant

S/3= 1.01034 kon 2. (67)

The depressed portion of the refractive index, characterized by a portion of the profile
dipping below the nominal AlGaAs cladding value n2 = 3.0, is most clearly evidenced
as the poles for the tunneling leaky modes are moved farther from the lower Im k axis.

The residue at the pole representing the bound mode is easily found to be

Res r_(ia) = ia I=+4) ia 2 (68)
(c2, 4(a+C2 )2) (2 + (I + f )

where cl = ce a and C2 = -y a. In Fig. 4, the shape factor is plotted as a function of3 c, showing a monotonic increase (for a given c2) as the poles are moved out into the
complex plane. Based on the form of the refractive index profiles themselves, this result
is expected, as a decrease in cl is associated with translation of the optical channel along
the positive x axis.

Figure 3 suggests that for small values of Cl and c2, the refractive index profile
approximates a sech2 z form, suitably scaled and translated a finite distance along the
positive x axis. This is indeed the case, and such profiles (developed from a slightly
different perspective) are taken up in the next subsection.
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IC. Truncated Refractive Index Profile Waveguides

We now consider the family of single-mode refractive index profiles based on
truncated versions of the potential

- Vs(x) = -4b2 sech2 bvi x, (69)

parameterized by the positive scaling constant b. Potentials of this form are single-mode
with a bound state eigenvalue k = i bVye. Equation (69) is representative of a smooth
function which decays relatively rapidly for large IxI making it a suitable refractive
index profile for waveguide design. For the purposes of this paper, a truncation is a3 discontinuity imposed upon a smooth potential, at a point x = x, such that

v(X) = 0 (X< X). (70)

Clearly, this creates a cladding region of constant refractive index

Sn(x) =n 2  (X < X). (71)

3 In previous work we completed an extensive analysis of these potentials from the
standpoint of scattering theory, including the effects of truncations of the potentials to
model core-cover interfaces, considering both single- and multimode waveguides[7]. In
the present paper, we extend our analysis to include the effects of truncations upon the
coupling coefficient. Although we restrict ourselves to single-mode waveguides arising5 from potentials of the form in Eq.(69), coupling between modes in multimode waveguides
follows a similar analysis.

We have previously shown that the transmission coefficient may be written in terms
I of the Jost solution f+(k, x) of the corresponding untruncated potential. In the case of a

single truncation at the point x = xj, the transmission coefficient takes the particularly3 simple form:

tT(k) = 2ik eikxl, [f+(k, xi) + ik f+(k, x) ]-, (72)

I whose poles provide the eigenvalues (and corresponding propagation constants) as a
function of xj. Here the prime denotes differentiation with respect to the spatial3 coordinate. Up to this point the results are completely general.

The Jost solutions for potentials v.,(x) of Eq.(69) take the form,

lik /c - bV/_ tanhbWT x

f+(k, x) = e ik- b -42 (73)
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Used in conjunction with Eq.(72), the Jost solution provides an analytic expression for
the bound state eigenvalue k

k Zi[-bvf2 tanh bv52 xi + bv2 1• + sech2 bV/2x (74)

The ratio

rT(k) eikzl
-i[ik f+(k, x1) - f'+(k, xi)] (75)

combined with Eqs.(72) and (73) gives the reflection coefficient

_ -be 2 ikx sech2 bV2./x1 (76)(k - kp) (k - k.)
where kp and kn lie on the positive and negative imaginary axes, respectively, taking
the values:

-b { -tl: (l +=sech2b\x)}2 tl- tanhbV2'Xl. (77)

When Eq.(72) is reduced, the transmission coefficient has the simple form,

I tT(k)= 2k (k + ibv/)
(k - kp)(k - k.)*

The shape factor of the branch can be conveniently expressed as a function of the
truncation point,

F FT be 2 ikpzl sech 2 bi x/1 (91 2(1 +sech2bifixi)

In Fig. 5 we plot the shape factor, along with 2 kp/i, as a function of the truncation point
x1. For comparison, we have included the magnitude of the area under the potential:

IAI = -4b[I- -tanh bVhx] (80)

which is also a monotonically decreasing function of x1 . It is interesting to note that the
decrease in the shape factor more closely parallels the behavior of the area for a larger
interval of x, than it does the eigenvalue itself.

In section III we emphasized that the well-known coupled-mode eLctric field is
effectively a two-mode solution for the composite double - well system representing the
coupled waveguides. For two reasons, it is appropriate to follow up on the implications of
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Eqs. (32). First, scattering theory provides a straightforward way to evaluate eigenvalues
of a composite structure consisting of two non-overlapping potentials, and second, it
provides further verification that scattering analysis of the coupled mode problem is
consistent with known results.

Starting from first principles, it is straightforward to show that the transmission
coefficient of the composite potential (see Fig.2) takes the form[8],

tc(k) = tL(k)tR(k) 3 (r R(k) rL(k)) = tL(k)tR(k) (81)ra=0 I 1 - rR_(k) r' +.(k) " (1

The scattering data in this expression applies to the potentials VL(x) and vR(x). From
this point we will reduce this general result to encompass the special case of two "mirror
image" single-mode truncated potentials separated by a distance 2d (i.e., dR = -dL = d)
for which the scattering coefficients take the form of fractions made up of arbitrary
k dependent functions, the numerator and denominator denoted with the appropriate
subscripts n and d:

r- (k) = rL (k - k d(k)' (82)

and

tL(k) = tR(k) = tn(k) (83)
td(k)'

so that the composite transmission coefficient can be written,

tc(k) = t2(k) (84)
)" rd(k) - ei4kd r 2 (k)

It is clear that for sufficiently large separations, the transmission coefficient will exhibit
two closely-spaced bound state eigenvalues lying close to the original single eigenvalue.
As we mentioned, the corresponding propagation constants,

#+ P + A#+ (85)

V- =/P-AV-,

which are roots of the denominator of Eq.(84), provide an approximation to the coupling
coefficient(see [1])

3 (86)

provided that the waveguides are weakly coupled.

Consider the truncated single-mode potential of Eq.(69),

VRW ) - 4b2 sech2 bV2/x x > 0(87)
0 X<0,
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-- whose reflection coefficient

r_(k) V 2(88)

follows directly from Eq.(76) with x, = 0. There is a single bound state eigenvalue at
k = 1b. The composite structure, consisting of this potential shifted a distance d along
the +T direction, and its mirror image, each with reflection coefficients (see Eq.(14)

rL(k) = rR_(k) = e2ik _b 2 , (89)
ha egevlus + f+ V + 22

3has eigenvalues k 2 - kon2 given by the roots of the denominator of Eq.(84).

An approximation to the shape factor of the single-mode potential is found by
inverting Eq.(47): F bsA #+ ,/ 0ebsA # ,9

-b - b

where s = 2d. As the separation is increased, a convergence of /+ and #- towards #3 is
expected, leading to better approximations to the shape factor.

In table 1 we list the eigenvalues and corresponding approximate values of the shape
factor (from Eq.(90)) against the exact value

R b
Im Res r_(ib) -- = 1.889 x 106. (91)

(We have taken b = 3.778 x 106). As d is increased, the expected rapid convergence to
the correct shape factor is readily apparent. Physically, this is the result of the increasing
accuracy of the weak coupling model as the waveguides are separated.

Aside from the general analytic interest of this approximation, it may be advantageous
to apply it in situations where the residue of the reflection coefficient is a complicated
or difficult to calculate. In our experience, this is often the case for refractive index
profiles incorporating two trnncations (to simulate two cladding regions), for which the

residues undergo extremely rapid variations in the vicinity of the bound state eigenvalues.
Certainly, further work is needed in this area.

B V. Conclusions

Coupling in multilayer waveguide structures is studied here using scattering tech-
niques. As inverse methods find wider applications in waveguide design, the inverse
scattering representation of transverse coupled modes developed here will be useful in
the design of multilayer devices. By replacing the explicit calculation of field-dependent
interaction integrals with straightforward expressions involving the residues of the scat-
tering data, the method provides further motivation to employ inverse scattering methods
in the design of optical devices.
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VII. APPENDIX

The matrix A(x) :

"0 1 0 0 0 0
0 0 f(ril) a(c,+c•) +)0 00 0 0 0 f(i•,) a (c',+ )
1 -x e-rit x e'nz e-fn elnz (92)

-1 • e71IZ d 0 17 X de M dq2z

0 0 e-1'x 51e 171X .e-n2z •de2z

I where
w f( i7m) = (i'm + ikl)(77m + ik 2 )(7im + ik) m= 1,2. (93)

I
I
I

I
I

I
I
I
I
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1 s, Am eigenvalues, (x10 6 ) shape factors, (x10 6 )

1 3.733 3.819 1.977 1.812

2 3.777 3.779 1.893 1.885

3 3.778 3.778 1.889 1.889

Table 1 Eigenvalues and corresponding shape factors (eq.(90)) for three values of separation.

I
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I
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i Step Index Truncated Sech2 ax High -V Profile

2.26 x 109 1.89 -7.56 x 106 1.5 - 9.0 x 10,

Table 2 Representative values of the shape factor for the three types of refractive index profile considered in3 this paper. The step index profile has a width of 0.94 uim. and a core refractive index n, = 3.1.
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I List of Figures

1. Typical multilayer planar waveguide (two layers shown). Guiding regions are shown

2. 2oupled potentials used to model the scattering picture of weakly coupled planarI waveguides.
3. Three depressed-cladding refractive index profiles for different (cl, c2): (0, 0.001 a)

(far right),(O, 0.25a) (dashed), (0.499 a, V0 68 a) (left).
4. Shape factors as a function of cl for c2 = 0.499 a (top), and c2 = 0.25 a.
5. From top to bottom: the area under the potential, the shape factor, and 2 kp/i as a

function of the truncation point.
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Abstract. Application of inverse scattering theory for designing planar optical waveguides
possessing prescribed propagation constants for light with a given frequency is well known.
However, waveguides designed using such a method, in general, will not be able to transmit
light at other frequencies with the same propagation constant. In order to overcome this
difficulty, the design problem for m modes is transformed and reformulated to an equivalent
inverse problem for Schr6dinger's equation. Then using inverse scattering theory, the potential
as a function of a modified spatial variable is recovered. Next the important problem of
finding an explicit relation between the actual spatial variable and the modified spatial
variable is solved and a systematic procedure is developed for designing waveguides which
have the same propagation constant for different light frequencies. Existence and uniqueness
questions are studied and some model calculations are presented.

1. Introduction

Proper values of propagation constants are very important in the design of waveguides,
since they govern the spatial and temporal characteristics of the signals transmitted inI waveguides. Systematic proc< dures for designing waveguides with prescribed propagation
constants appeal to the existing inverse scattering theories [1-51, which were originally
developed for the inverse problems in quantum mechanics. In standard applications ofI- inverse scattering theories for designing optical waveguides [6-9], we make use of the fact
that at a fixed frequency Maxwell's equations governing the light propagation in a
waveguide can be transformed to Schr6dinger's equation with an energy-independent
potential. In this equivalent quantum mechanical inverse problem, the bound states
energies are associated with the prescribed propagation constants, and the potential is
related to the refractive index of the designed waveguide.

The systematic procedures for designing waveguides as outlined above [6-91 are
applicable as long as we are interested in light propagation with a prescribed propagation
constant at a single frequency through the designed waveguide. However, such a
waveguide in general will not have the designed propagation constants for light with
frequencies other than the specific frequency used in the design of the waveguide.
Waveguides, which have the same propagation constants for different light frequencies,

0266-5611193/010069 + 12507.50 C) 1993 lOP Publishing Ltd
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have important applications in optics, such as in harmonic generation, wave mixing,
parametric amplification, and multiplexing [10-12].

The need for developing a systematic method to design waveguides having the same
propagation constant for different light frequencies has motivated us, in this preliminary
study, to design planar optical waveguides that have the same propagation constant for
TE modes at different frequencies. We achieve this objective by showing that Maxwell's
equations can be related to Schr6dinger's equation with an energy-dependent potential
and that the requirement for the waveguide to have the same propagation constant for
m different frequencies is shown to be equivalent to the corresponding energy-dependent
potential supporting m bound states of specified values. Having reduced the problem to
an inverse Schr6dinger problem for energy-dependent potentials, we then subject this
Schr6dinger equation to a transformation [13-19] which reduces the inversion to a

Schr6dinger inverse problem for an energy-independent potential. The modified inversion
problem is then solved by using the existing Schr6dinger inverse scattering methods in
one dimension [1-5]. However, since the equivalent inverse Schr6dinger problem is
formulated with respect to a modified spatial variable and not the actual spatial variable,
the energy independent potential found will not be of any use unless the connection
between the actual spatial variable and the modified spatial variable is established. We
study this important problem in detail and find an explicit relation between the actual
and the modified variable, which then enables us to make use of the energy independent
potential and develop a systematic and practical procedure to design waveguides which
have the same propagation constant for different light frequencies.

In section 2 we review the problem of electromagnetic wave propagation in a planar
waveguide. Section 3 deals with transforming Maxwell's equations to Schr6dinger's
equation with an energy-independent potential and developing a systematic method to
design a waveguide which has the same propagation constant for different frequencies.
In section 4 examples of practical interest in waveguide design are presented. We find
that the proposed method enables us to design waveguides which have the same
propagation constant for any finite number of different light frequencies. The procedure
leads to solutions which depend on infinitely many arbitrary parameters. Of course, this
non-uniqueness can be further manipulated, enabling the designed waveguide to have
other desirable properties.

I 2. Statement of the problem

Propagation of electromagnetic waves in a planar optical waveguide, with refractive
index varying continuously only in one direction say x, is analyzed by assuming that the
electric, E, and magnetic, H, fields have the following forms [61:

E. (x, y, z, t) = E. (x)e'("' - #') (2.1)

H.(x, y, z, t) - H.(x)e'" -'- (2.2)

where x,y, and z are the cartesian coordinates with z along the axis of the waveguide,
t is time, a represents the components of a vector in the x, y, or z directions, co is the light
frequency, and P is the propagation constant. Subsitution of (2. 1) and (2.2) in Maxwell's
equations lead to the following equation [6].

I d(d-- *'•(x) + [n'(x, ko)ko - fi2]•,&(x) = 0 (2.3)

I
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I for the TE modes. In (2.3) the positive function n(x, ko) is the refractive index, k0 = to1c,
with c being the speed of light in vacuum, and 41(x) is the field function associated with
the electromagnetic fields under consideration. The field function O,(x) is to decay fast
enough, as lxi increases, so that the field function is associated with finite energy which
is mostly confined to the inside of the waveguide.

It is well known that the differential equatio (2.3) with the above condition can have
solution only for certain values of fP, which are called the cigenvalues of the differential
equation, and for the problem at hand correspond to different possible propagation
constants of the waveguide. Therefore in the waveguide design problem at a fixed
frequency, one only need to find n(x, ko) which is associated with the desired propagation
constants Pi for the specified frequency. A standard procedure to solve this design
problem is to appeal to the theory of inverse scattering which was first developed in
quantum mechanics, where one has to find the potential from the spectral data of the
associated Schr6dinger equation [1-5]. In order to be able to make use of the well
developed methods of inverse scattering theory in quantum mechanics [1-5], one
transforms (2.3) into a Schr6dinger differential equation form

d d2 2
SO(x) + [k2 - k V(x, k0)lO(x) = 0 (2.4)

3 where

= n,(k0 )0 , -I2 (2.5)

V(x, ko) = n 2(ko) - n2(x, k,) (2.6)

with n, (k,) being the refraction index for Ijx -+ oo.
Having transformed the Helmholtz equation (2.3) into a Schr6dinger equation (2.4),

one notes that the design problem of optical waveguide, that is finding the index of
refraction n(x, ko) which gives us the desired propagation constant fP for the specified k0,
is reduced to an inverse scattering problem in quantum mechanics, where the potential
4k V(x, ko) is to be deduced from the information on the bound states and the reflection
coefficients. In this quantum mechanical formulation of the problem, one refers to kA as
the energy of the system and the eigenvalues as the bound state energies, which we will
denote by - y2. Of course as can be seen from (2.5) these binding energies, y2 , are related
to the desired propagation constants through the relation

Y f 02 no(ko)kj. (2.7)

From (2.7) it follows that specification of the propagation constant fP and frequency
co, will give us the needed bound state energy information for the analogue quantum
mechanical problem. Having established the connection between the optical waveguide
and the inverse quantum mechanical problem, it is then straightforward to use existing
methods [5-71 to find the desired potential ko V(x, ko) associated with the bound states
and the reflection coefficients and then find the required refractive index n(x, k,) from
V(x, ko) using (2.6). However, this standard approach is useful for designing waveguides
associated with only one fixed frequency. That is, since the inversion potential / V(x, ko)
depends on the frequency wo, if we change co, the potential will change resulting in change
of the binding energy y2 . In other words the waveguide designed will not have the desired
propagation constant P? at other frequencies. Therefore if we are interested in designing
waveguides which have the same propagation constant for different frequencies, the
method as stated above is not able to provide us with the desired profile. We will show

I
i 112



I
I

72 M A Hooshyar and L S Tamil

3 in the next section that it is still possible to use the results of inverse scattering theory
[1-51 to design waveguides which can have the same propagation constant for different
light frequencies.

n,! Before concluding this section, let use note that the refractive index n(x, k4) in general
is a function of both the spatial variable x and also the wavenumber ko. The dependence
of the refractive index on k0 or the frequency of the light propagating through the
waveguide is a very interesting and important topic. However, in this preliminary study,
for the sake of simplicity in presentation, we restrict the study to refractive indexes which
are twice differentiable with respect to x and have the following type of dependence onI kc0 and x:3 n(x, k) = n. (ko)q(x) 

(2.8)

where j(x) is a function of x only and, which tends to I as lxi tends to infinity. Since
n.(k0 ) is associated with the refractive index of the cladding, it will be assumed that
n.(k0) is an arbitrary but known function of I0. In other words, in this study we make
the assumption that the refractive index is made up of a known positive function n,. (ko),
multiplied by a positive function q(x) which is a function of x only. In this study we also
need to restrict i7(x) to class of function which satisfy the following inequality:

f I.I(x) - II dx < oo. (2.9)

The design problem to be presented in section 3 is to develop a systematic procedure for
finding the frequency-independent function 1(x) corresponding to a refractive index
which will allow different light frequencies to propagate through the waveguide with the
same propagation constant fi.

1 3. The inversion procedure

As was shown in the previous section, our design problem is to develop a systematic
procedure to design waveguides which have the same propagation constant fP for all
different light frequencies of interest. In order to be able to restate this design specification
in the equivalent inverse quantum mechanical problem in a more transparent fashion,
let us rewrite the differential equation (2.4) in the following manner:

d2-- q(x) + [k2 - k' V,(x) - V2(x)]*(x) = 0 (3.1)

where

VI(x) = V(x,,k)In•(k 0) = ! - 12(x) (3.2)

V2(x) = #2 V. (x). (3.3)

It should be remembered that throughout the discussion, the propagation constant
fi is fixed but the frequency co can take different values, co, with i = 1,2. .. , m. Since (3. 1)
is the same as (2.3), the eigenvalues of (3.1) will be the same as those of (2.3) and will
be related to frequency co and propagation constant P through (2.5). However, the
advantage of writing (2.3) in the form of (3. 1) is the fact that (3. 1) clearly shows that our
design problem is equivalent to an energy-dependent Schr6dinger inverse problem and
we are interested in finding V, (x) and V2(x) when binding energies of (3. 1) are specified
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according to following equation:

yf 2  n'(koj)k i= 1,2. m (3.4)

where Iki = co•/c. Equation (3.4) is nothing but (2.7), and it is only written to emphasize

the fact that in the problem of interest we are not given a single bound state energy, as
may be inadvertently deduced from the fact that we only have one propagation constant,
but in fact we are given m bound states energies. These binding energies can be easily
computed from (3.4) by substituting the desired different values of frequency wO,
which we would like to propagate through the waveguide with the same propagation
constant X.

Equation (3.1) as it stands is not in the standard Schr6dinger equation form and
therefore existing inversion methods for energy-independent potentials cannot be directly
applied. However, similar equations have been dealt with when one tries to solve inverse
problems for angular-momentum-dependent potentials [13-14] and wave equations in
one dimension [15-19]. Motivated by these results, let us then transform our independent
variable x to p, through the following relation:

I p(x) =fox dt f/l-V,(t) =f ,(t) dt. (3.5)

In view of the fact that 17(x) is a positive function, the above-defined mapping is
one-to-one and the inverse mapping exists. This allows us to write the quantities of
interest as either functions of x or as functions of p, depending on which representation
is more suitable for solving the inversion problem. With this observation in mind let us
define a modified field function through the relation

OW(x) = '(x)ac(x) (3.6)

3 with

,(x) = 4 .) (3.7)

3 Changing variable in (3.1) from x to p and making use of (3.6) one can rewrite (3.1)
in the following form:3 ý(p) + [k 2 - W(p)] (p) = 0 (3.8)

where

W(p) = -d2F (p)][24(p)]-' - [ Rp)] [2q(p)] 2 -2  
- 1fl(p)2

1. (3.9)

In (3.9) ý(p) and q(p) are the field function O(x) and the refractive index 17(x), written
as functions of p. respectively.

The advantage of working with (3.8) instead of (3.1) is clear. Equation (3.8) is the
Schr6dinger equation for the energy-independent potentials, whose inverse problem is
well studied. Furthermore, let us note that if $ is an eigenfunction of (3.8), then the
associated field function 4' is also an eigenfunction of (3.1). In other words the eigen-

values of the two equations are the same and therefore the design problem is reduced to
finding W(p) with bound state energies specified by (3.4). This is the classical inverse
quantum mechanical problem and the solution to it is well known [1-6]. The only point
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that we need to emphasize is that the solution is not unique and even if we specify not
only the bound state energies but also the reflection coefficients, still the inversion result
we depend on m arbitrary parameters, which in the design problem could be used to our
advantage. However, for the moment let us assume that a potential W(p) associated with
the given bound states has been obtained and the refractive index j(p) solution of the
nonlinear differential equation (3.9) with the boundary conditions

lim 4(p) = ! (3.10)

has been found as a function of the intermediate variable p. Then the only remaining
problem is to find the refractive index as a function of the spatial variable x, when the
refractive index as a function of p is known. In order to achieve this objective we make
use of (3.5) to deduce the following relation:

x = FL) =f d" . (3.11)

Now since j(p) is a known function, equation (3.11) can be used to find x as function
of p. In other words the one-to-one function FRp) can be computed and its inverse F-' (x)
can also be found. Noting that p = F-'(x), we are then in a position to find 17(x)
q(F-'(x)). By construction the so-designed waveguide will have the same propagation
constant j9 for all light frequencies cw,, with i = 1,2,... Im.

In principle the above procedure enables us to design waveguides with the same
propagation constants P for different frequencies provided that we can find 4(p). In order
to show the existence of the solution to (3.9) and develop a practical method for finding
the solutions, we note that Berryman and Greene [181, in dealing with inverse problems
for elastic waves, have shown that the impedance can be either recovered directly by
solving a linear second-order differential equation, which can be regarded as the
analogue of (3.9), or indirectly by working with the wavefunction associated with zero
frequency. Motivated by this result [181, let us study the wavefunctions, solutions to (3. 1)
and (3.8), at zero frequency which corresponds to = -k' 2. We note that when co = 0
equation (3.1) simplifies to the following equation:

d- O -- #,(x) = 0 (3.12)

i with e'Px being its two fundamental solutions. Let us also denote ýt (p) as the solutions
to (3.8) for P = - #2 with asymptotic behaviours of the form e'01 for p tending to T oo,
respectively. We should note that ý i (p) are linearly independent. Otherwise, we are
forced to accept that -_ ( is an eigenvalue of (3.8). However, this is not the case since
we are assuming that the potential W(p) is chosen in such a way that (3.8) has eigenvalues

- y, as given by (3.9). Also we assume W(p) is such that the solution t ± (p) to (3.8) exist
for all real values of p, and the associated function n(x) satisfies (2.9). Having defined the12 desired solutions to (3. 1) and (3.8) for k2 = -p(2, we then make use of the relation (3.6)
to find

! •(P) = /(p- A- et' (3.13)

where At = exp(± if0:* [r(x) - ldx). It should be noticed that (3.13) is the analogue of
equation (40) of Berryman and Greene [ 181, however, in order for (3.13) to be of practical
use we need to eliminate its dependence on x by taking the derivative of (3.13) with
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respect to p. Making use of the existing relation between p and x a, given by (3.11), we
obtain

dI = d(p) ± 2P IJ±(p)[2(p)]-' (3.14)

which can be viewed as two linear first-order differential equations satisfied by 4(p). The
solution to (3.14) can be written as

j(p) = 2fl+ (p) f +2(t)dt (3.15)

or

j(p) = 2# I "(p) _ (t)dt. (3.16)

It should be noted that if q(p) defined by (3.15) becomes different from ý(p) as defined
by (3.16), then from equations (3.13) and (3.14) one is forced to accept that the linear
second-order differential equation (3.8) has more than two linearly independent
solutions. Of course this not being the case, proves that the refractive index q(p) as
defined by (3.15) or (3.16) are identical and one can use either representation to compute
the refractive index. Also, since we are finding the refractive index in such a roundabout
way, one is justified in asking whether this refractive index actually satisfies (3.9).
Performing the necessary operations, it is very easy to verify that indeed 4(p) as defined
by (3.15) or (3.16) satisfies (3.9). Furthermore, using a similar proof to that developed
to show (3.15) and (3.16) lead to the same refractive index, we can conclude that the
solution to (3.9), satisfying the boundary conditions specified by (3.10), is unique and is
given by (3.15) or (3.16).

Positivity of 4(p) can be deducted from (3.13), (3.15) or (3.16). Equations (3.15) and
(3.16) show that j(p) is non-negative. To show positivity of 4(p), let us assume that there
exist a point po such that i(po) = 0. Then (3.13) will imply that $+ (po) = 0. From this
information we can deduce that the Wronskian of $ + (p) and _ - (p) is equal to zero. In
other words the solutions $ ± (p) of (3.8) are linearly dependent. Then we appeal to the
fact that $ , (p) are linearly independent and conclude that the point Po such that
4(Po) = 0 does not exist and q(p) is a positive function.

The proposed rni:thod for finding the refractive index q(p), seems to have replaced the
need for finding the solution to the nonlinear boundary value problem as given by (3.9)
by the need to find the solution to the linear equation (3.8) for a special value of the
Senergy k2 .Although this by itself is a great simplification, it should be noted that the gain
is even greater when we remember that any standard inversion procedure which we use
to find W(p) will also be able to give as the wavefunction for different k2 values without
having to directly solve the associated Schr6dinger equation. In other words the functionsI $ (p) needed for calculation of 4(p) can be easily found and we will not need to appeal
to numerical methods to solve the linear differential equation (3.8) for k2 = - f2 .
Furthermore, the solution given in the form of (3.15) and (3.16) enable us to easily
integrate (3.11) and find the dependence of the spatial variable x on the intermediate
variable p:

x .,= 2l In +f -1(t) dt [f•+'(t) dtr- (3.17)
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or

x -•In {[f 4qZ z] [JI $ l]}. (3.18)

Again the two representations of x as given by (3.17) and (3.18) are equivalent, and can
be used to relate the spatial variable x to the intermediate variable p.

We conclude this section by noting that the proposed procedure is able to give us a
practical method for designing waveguides which have the same propagation constant
for different light frequencies. The procedure does not leae to a unique solution and this
of course is of practical importance since it enables us to design waveguides having
further desirable properties. The sources of non-uniqueness are due to the fact that in
this design problem the reflection coefficients are not specified and can be chosen
arbitrarily and, furthermore, for each required bound state we also have a norwialization
parameter which is arbitrary. In order to illustrate the procedure in more detail and see
some of the effects of the existing arbitrariness in the procedure, in section 4 we present
examples which are also of practical interest in waveguide design.

4. Examples

In this section we study the design of a waveguide which allows two frequencies o9. and
C02 to propagate with the same propagation constant P. Following the procedure
developed in section 3 we first use (3.4) to define the bound state energies associated with
this problem.

= - n'(kol)k (4.1)

2 2 - n., ()2(4.2)

where n, (k 01 ) and n,,(k 0 2) are the refractive index of the cladding at the frequencies co,
and ow2 , and o, = w 1,/c and ko2 = W2/c. Having defined the desired bound state energies,
we are now ready to appeal to the well known results of ".ay and Moses [20] to find the
bound state wavefunctions ,1 (p) and ý2(p) and the associated potential W(p):

A•,() A 1A 2(Y1 - Y2 )e(2,2÷ '1p

A(P) 2 Y2(Y1 + 72)A(P)

ý2(o) = A2e'2 A A2(y, - Y2)e(27' + 72)P

A(p) 2y, (y, + Y2)A(P) (4.4)

and

W(p) = 2 d [ 1, (p)ey" + $ 2(p)e'2'] (4.5)dp

where
~()= Abe 2 "'p A2e•2P A1 A,(y, - V )2e2L71 + •)p

A(p) = I + ±L:: + ý2 eL F f 4,7A2(Y' 2C27 + 72)p (4.6)
+ 2y, 2

72 
4y1y2(y, +~ y2) (.6

and A, and A2 are arbitrary positive constants.
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0.5

I - 00o

-o0 Figure 1. Plot of x FRp) as defined by
(3.11). The solid line corresponds to
A, = A2 = 2 and the doted line is associated
with A,•=4 and A2 =8. In all cases

-1o -o-Z 0.0 0.5 0 = 6.0611 mim', n --()=n.= 1.4850,

pD,-m kol 2.0270pjm-' and kfo, = 4.0537/mnn-'.

Having found the potential and the bound state wavefunctions we are then in a
position to use equation (2.1) of Kay and Moses [20] to find the needed wavefunctions

± (p) for kV = -fi 2 without having to solve the differential equation (3.8) directly:

I ++(p) = + + + 'j-(P- l]e' (4.7)
and
a 

+ = [e,+ p + ,,,]eP" O 
(4.8)

It's easy to verify that the so-defined ý ± (p) have the desired asymptotic behaviours and
are solutions to (3.8). Therefore they can be used in (3.15) or (3.16) and (3.17) or (3.18)
to find the refractive index and the spatial variable x as a function of the intermediate
varaible p numerically. Having found 4(p) and x = FRp), the procedure is then complete
and the refractive index 1/(x) can be numerically obtained. The result of the numerical
computations are presented for different values of A,, A2 and different light frequencies
in figures 1-4. In these examples we have assumed that the refractive index n(x, ko) as
defined by (2.8) is independent of wavenumber k0 and can be written as q(x)n.,.

It should be emphasized that the examples presented here are only for the sake of
demonstrating the proposed method. Practical implementation of this technique and
actual fabrication of such waveguides need further study. Also, for the sake of simplicity
in presentation, we have only used reflectionless potentials in these examples. However,

I

3
5 •

Figure 2. Graph of the refractive index
O n(xko) = q(x)n. as defined by (2.8) and

I-05 o0o 05 (3.15). Symbols and the constants are theIn same as in figure I.

I
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004

O00

0.0

S-o04 
Figure3. Plot of 0 =-x-p=
F(p) - p. The solid line corresponds
to A, = A2 = 2 and the dotted line

-006 •................ is associated with A =4 and
.......... A2 = 8. in acases i = 6.0611man-,I -4 -2 0 2 4 n,(4) = n. = 1.480, kol=

3.9270im-' and k, = 4.0537an-'.

in actual applications of the method, we should remember that any potential which has
the proper bound state energies, including those which are not reflectionless, can be used.
Such potentials can be found by appealing to the Faddeev-Marchenko method [5, 21].

d
SW(p) = 2 • K(p, p) (4.9)

3 where

K(p + + M(p,C) + K(p, t)M(ý + Cd) = 0 C < p (4.10)

3 and

M(p) = (1/27E) f-CoJ dk R(k)eikp + A, e (4.11)
i-

with R(k) being the reflection coefficient. Having found W(p), one can apply the

proposed method to find the refractive index associated with potentials which are not
reflectionless. Use of potentials with R(k) # 0 may be preferable, if such potentials leadI1
to waveguides with refractive indexes which are easier to fabricate.

The above equations show that in order to find W(p) uniquely, we not only need the
bound state information and the normalization constants A,, but also we need to know
the reflection coefficients R(k) for all real values of k. In view of the fact that in fibre
optics design usually only the value of propagation constants are specified and R(k) is

* 1.581

Figur 4. Graph of the refracive
mm index r,(x, k@) -rqx)n.. Symbols

1 -,-2 o 0 and the constants are the same as in

tfigure 3.
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not given, it then follows that such a design problem involves a great degree of non-
uniqueness. A very interesting question that was raised by the referees is with regard to
the nature of this non-uniqueness and its physical implications. Let us study this question
by noting that in order to remove this non-uniqueness, we need to know R(k) for all real
values k. In view of the definition of k as given by (2.5), we note that the wavevectors
of interest, k = (k,, k:), will fall into one of the following two categories. Case (a) is when
P3 is real and n'(ko)ko > P2, resulting in both components of k to be real. That is
k, = k = + [n'(ko)ko - P2]'12 and k. =/3. Case (b) corresponds to the evanescent waves
[22], where / = k: = -i# is purely imaginary but k, = k = + [fn?(k0 )k2 + •_2],2 is still
real. From the above analysis, it also follows that in case (a) for large values of lxi the
wave will behave like a free wave and therefore from the point of view of geometric optics
it would correspond to refracted rays [221. This analysis shows that data on R(k) are
associated with waves which are significant only in the spatial transient region and their
powers are significantly diminished in the spatial steady-state region [22]. The only waves
that will have significant power for large values of z, that is in the spatial steady-state
region, are the bound waves [22]. Of course propagation constants of such waves, /,,
have played a very important role in our design procedure. This observation clarifies the
nature of the existing non-uniqueness in our design problem. It shows that the main
difference between the different waveguides which can be deduced from the proposed
method is in their radiation properties in the spatial transient region, which is usually a
short distance from the source. However, for most of the length of the proposed
waveguides, that is in the spatial steady-state region, waves associated with data R(k) will
not be significant and only the bound waves will be present. In other words, in the spatial
steady-state region, all of the proposed waveguides will perform similarly as far as the
bound waves are concerned. It should again be emphasized that although we are mainly
interested in the propagation of the bound waves, the existing non-uniqueness can play
an important role; such as the ease of fabrication of the waveguide or coupling of energy
from the source to the waveguide. Of course such a study is beyond the scope of this
paper but it deserves further consideration both for planar waveguides and circular
waveguides [6], where the same type of non-uniqueness also exists.
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accuracy, convergence, and effects of finite cladding
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We have formulated a matrix eigenvaiue problem for cylindrical optical fibers from a set of finite difference equations. Numer-

ical solution of this problem yields the propagation constants for propagating modeL The method can be used for arbitrary indexI profiles, does not require the explicit evaluation of Bessel or modified Bessel functions, and does not use iterative methods to
search for the propagation constants as was the case in earlier proposed methods using finite differences. The method is accurate,
fast, and simple. We have established the convergence and stability of this method, and explored the effects of finite cladding5 width on the dispersion characteristics.

1. Introduction the variational method the scalar wave equation is
converted into a variational problem subject to the

Wave propagation in optical fibers has been ana- given boundary conditions. The variational problem
lyzed using various methods. We will be using a fi- is solved either by using the Rayleigh-Ritz method
nite difference method. Other methods proposed to [31 or perturbation method [4]. In the Rayleigh-

Sfind the propagation constants of guided modes in Ritz method the eigenfunction is expressed in terms
optical fibers with arbitrary refractive index profiles of a set of orthogonal functions and the variational
include the WKBJ method, variational method, function is minimized. The disadvantage is that we

power series expansion method, staircase approxi- need to assume a trial function [ 5 ). In the pertur-
mation method, and finite element method. bation method of analysis, the computation of the

The WKBJ method [ 1,2 ] is a geometrical optics propagation characteristics for an arbitrary profile is
approximation that works whenever the refractive done by correcting the solution for a uniform core
index of fiber varies only slightly over distances of fiber considering the difference in the profile as the
the order of the optical wavelength and are appli- perturbation term.
cable only to thick fibers in which many modes can The power series expansion method [ 6 ] consists

propagate. For those fibers in which only a few modes of expressing the refractive index for the field term
propagate, the error of the WKBJ method increases by term. This method is useful only for cases in which
intolerably and this method is not applicable to the refractive index profile can be expressed by a rel-I modes near cutoff. Besides, the effect of an index atively simple power series. In some cases the series
valley at the core-cladding boundary, which plays an do not converge and this method is not applicable
important role in reducing multimode dispersion, [71. In the staircase approximation method [8,9]3 cannot be treated by the ordinary WKBJ method. In the refractive index is approximated by an appro-

0030-4018/93/$06.00 © 1993 Elsevier Science Publishers B.V. All rights reserved. 393
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3 priate staircase function. The wave equation is solved characteristics. Our conclusions are given in sect. 5.
in each stratified layer and the solutions are then
connected at the cylindrical boundaries between these
layers to obtain the proper solution representing the 2. Mathematical formulation
propagation characteristics. The number of layers
should be infinite in order that the refractive index The optical fibers considered here are inhomoge-
profile approaches that of actual fiber profiles. Thus, neous dielectric cylinders of radius a called the "core"
the results of the propagation constant will differ from surrounded by a homogeneous refractive index me-
the actual values when a finite number of layers is dium called the "cladding". The cladding, in turn, is
used. A large number of layers requires considerable encased in a highly lossy material called the jacket.
computer time and hence in this method the accu- A representative fiber cross-section is shown in fig. 1.
racy and computer time are traded off. The refractive index profile of the fiber, called an

The fiber problem has been analyzed by Okamato a-index profile, is given by
and Okoshi I 10] using a finite element method for- 2) 2[12pA(/)a] forO<<a
mulated in the axial fields. The problem with this n ,

method is that it suffers from spurious modes when -n2[ 1-24], for r>a. (1)
the finite elements are not carefully chosen [I I].
Lenahan [ 121 has formulated a matrix eigenvalue Here, nA is the maximum refractive index of the core,problem from a finite element analysis using the ,4 is the relative refractive index difference between
prGalerkin weighted residual method. To achieve the core axis and cladding, p a parameter represent-
o a tina efiied linear approx- ing the refractive index step or valley at the core-
computational efficiency, a piecewise usear cladding boundary. A smooth continuation at the
imation to the solution function must be used. core-cladding boundary, the presence of a step, and

In this paper we present an efficient finite differ- that of a valley are expressed byp= 1, p< 1, and p> 1,I ence method to find the propagation constants of op- respectively. {a I acR} is a profile parameter. Some
tical fibers with arbitrary refractive index profiles, examples of a-index profiles are shown in fig. 2.
The method does not involve a search procedure to The propagation characteristics of an optical fiber
find the propagation constants, nor does it require are governed by the scalar Helmholtz differential
explicitly evaluating Bessel and modified Bessel equation (151
functions, as was the case in the earlier works on fi-
nite difference analysis of optical fibers [ 13,14 ]. WeII
construct a matrix equation from a set of simulta-
neous finite difference equations governing the
propagation in an optical fiber and solve for the ei-
genvalues to obtain the propagation constants. In
sect. 2 we give the mathematical formulation of the
discretized differential equation at various grid points
in the radial direction and the construction of a ma-
trix equation incorporating the boundary conditions 01
at the core-cladding interface and the jackeL Ex-
tending our method, which is formulated for a-in-
dex fibers, to arbitrary refractive index profiles is
covered in sect. 3. In sect. 4 we discuss the numerical
evaluation of propagation constants and present re-
suits. This includes a discussion of the convergence
and stability of the method along with the effect of Jacket
the number of grid points on the computation, and
the effects of finite cladding width on dispersion Fig. I. Optical fiber showing grid points used in the example.
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EM F, 2. Examples of a-index proffies. a =oo yields a step index, while a =2 yields the Parabolic index. Values of p control the character-

istics of the interface between the core and the cladding;p< I results in a step at the interface, p> I yields a valley.

d2-,,. ,o ld (2)) d o, form=o
dr- rrW + n2(r)k2-- 2 _ 2 =O (2) dyfl=0, -i)krrd
This scalar wave equation is the simplification of the Wv(0) = 0, for m n0. (4)
exact vector wave equation under the assumption The other boundary condition applied is the ex-
that Vn/n is small, which includes the "small index tinction of field at the jacket written as
gradient" and "weakly guiding approximations"
[16,171. In the above equation W(r) is the trans- Via, =VW,.hbO=, (5)
verse field function which may denote either the di- where b is the radius of core and cladding together.
electric field or the magnetic field, r is the radial co-
ordinate, n(r) is the radial refractive index profile, 2.1. Transformation to nondimensional form
k is the vacuum wave number, 8 is the propagation
constant which is to be computed, and m is a mode We need to nondimensionalize the differential

parameter given by equation for easy computation. This is achieved by

m=l , for TE and TM modes (n=O), setting

=n+l, forEHmodes (neN), u=W//uo, x=rla, (6)
= n- I , for HE modes (nell). (3) where •o is the maximum field amplitude and a is

the radius of the core. Substituting eq. (6) into eq.

We need to solve the differential equation in order (2) we obtain
to compute the propagation constants. From the ro- d~u I du . m22 \tational properties of tthe associated boundary con- d- + +a k2 n2 (xa)-_2_ M u=0. (7)

dition at the center of the core (r=0) is
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By including the refractive index distribution given h is the width between the grid points and x=ih,
by eq. ( 1 ), the above equation can be rewritten as {i= 0, 1, 2, ...}. Substituting eqs. (13) and (14) into
d2u ldu 2 m 2 (11), and defining
x --+ +a2 k2n[[l-f(xa)]-2-- aa)U r V2n(

=0, (8) nl-n22

where we get

f(r)=2p,(r/a)", O<r,<a, u1+1 -2ui+ui-l +1 uI+,1 -u,_ih2 7 h- 2h
=24, a,<r.

Defining the parameters U and Was + rf(iha)- U10, (16)

I U=a(k2n2_~I2) 1/2, W=a(fl-k 2 n)n2') and on rearranging, the equation becomes

we can define V, the normalized frequency, as [171] [l)
V

2
=U

2
+•W

2 =k 2a2(n 2n22), (9) W2 2)

5 and the modified propagation constantj as +ui['(2+7._2)+ Pf(iha)_-]
V2w 'n2 ( ,- T2 f)

n - 2 ý =a2(k2ni,-_ 2)"n1k (10) +u+, [2 l+01 =0. (17)

Then eq. (8) becomes For the purpose of illustration, we have chosen six

d d2u + du 1_ V 2 n, m2 grid points along the radial direction as shown in fig.
+ n2 f(ax) - u=0, 1. In general, the number of grid points can be any

number not less than four, the minimum necessary
to take care of the boundary conditions. Depending

with on whether m = 0 or mn #0, the field or its derivative
f(x) = 2pAx", 0<x< 1, vanishes at the center of the core. When the deriv-Iative of the field vanishes, uo= u,.

=24, x> 1. (12) Writing finite difference equations at the grid
points, we obtain the following set of equations. At

2.2. Discretizing the differential equation 1,(4+2M2 _6
When the function u and is derivative are single u 2h 2 + Vf( I ha2) -h + U2 T 0,

valued, finite and continuous functions of x, the first (18)
and the second differentials can be approximated by
third order difference formulas as follows [ 181: where

Idu ui+ I-ui-1 (1) =1 , M=0,

dx' 2h =(13) 0, m#0.

d2u uj+ I -2u.+u1 _,1  At i=2,
h-3 8+M2Here u 2) + u2 ( 4 f(2h2)- +U +u3 ()

iuj=u(x), ui+l =u(x+h), u,-I =u(x-h), =0. (19)
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At i=3, -(2i+ (2)a . + - 2 i h 2 ( 2 5 )

u2 (-) +( 3 (I 9h 2  +Pf23ha)- +u 4 (• In order to convert the problem into an eigenvalue

0. (20) problem, we rewrite eq. (24) as

(T-0I)u=O, (26)At i=4,
A 7 i , 32-9 mwhere I is the identity matrix, and T is a tri-diagonal

7 ) +u. ( 32 + m~ +Pf(4ha) -~ + US (.9 matrix.U3 I-u4 1- 2h 
2
) Equation (26) defines an eigenvalue problem. This

0 (means that eq. (26) has a nontrivial solution if and
=0. (21) only if ff is an eigenvalue [ 19 ]. Hence, the required

At i= 5, since the field goes to zero at the jacket, normalized propagation constants contained in Aare

S 50+M2 obtained by finding the eigenvalues of the tri-diag-
u4 (ii) +us (- + Pf(Sha) =0. onal matrix T. This mathematical formulation can

I) 0h2) 25be generalized to {n In I E-14} grid points in the radial
(22) direction of the fiber without difficulty.

Finally, at i= 6, again using the boundary condition
that the field goes to zero at the jacket,

3. Arbitrary profiles, multiple layers, and field
u4 =0. (23) distributions

Since the boundary condition in eq. (23) is in-corporated in eq. (22), we have a system of five We have developed this method of analyzing op-
equations . tical fibers using the a-index profile. This is becausethe a-index profile is commonly used in the litera-

ture and can represent a large variety of real refrac-
2.3. Matrix equation formulation tive index profiles, including the very important step

and parabolic profiles. But our formulation is not
Formulating a matrix equation from the above set limited to a-index profiles.

of equations for the convenience of generalization To see how to extend the method to arbitrary pro-
and easy computation, we obtain files without rederiving a system of finite difference

,-0 a12  II u equations, consider eq. ( 11). The refractive index

a2, a2- a2U2 profile is included in this equation through the func-
a21  a 2 2 --• a23  U2  tionf(x), which is defined in eq. (12). Usingf(x),

Ax= a 32  a33 -f a4 U3 the refractive index profile of the fiber can be re-a,3 a,, -/ a45 U written as

a4 a55  US n2 (x) = n [ -f(x)1. (27)

=0, (24) Solving for f(x) yields
where the matrix elements are defined by f(x) = 1 -n 2 (x)/n . (28)

- (2i-i ) By generating the discretized f,=f(x,=ih) from
NOsamples of an arbitrary refractive index profie n(x.

2i2 +2m 2 -j + Pf'iha) i= I the method we have outlined in this paper can be

a'a= 2i2 h2  + h used directly on arbitrary profiles, as long as the

2i 2 +m 2  "weakly guiding" approximation holds.
- i2h2  + Vf(iha), io I, Multiple layer waveguides of any number of layers

may be considered special cases of arbitrary refrac-
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tive index profiles. Since we have normalized the fi- U2 k n2_ P2
ber core radius, a, to unity, we must explicitly define X= V 2 = k 2n2 1,2 , • (29)
which layers comprise the core before using our

method and scale all quantities accordingly. Note that some authors (e.g. Gloge [221) define a
Since the propagation constant for a mode i, &, is normalized propagation constant as

uniquely associated with a ff, the field distributions b= I -U 2/V2= 1 -.- (30)
for a propagating mode can be determined from the
eigenvectors u of matrix T (see eq. (26) ). Many ei- One program computes X for all propagating modes
genvalue routines will return eigenvectors as well, but at a specific value of m in eq. (2) over a range of
at the cost of greatly increasing the number of normalized frequencies V. Another program searches
computations. for the cutoff frequency (Vs) of a specific linearly

Useful approximations to the eigenvectors for polarized (LP) mode. Both programs allow all of the
propagating modes can be computed by constructing parameters in eq. ( 1 ) to be varied, as well as the val-
the tri-diagonal matrix T, subtracting a specific A ues of b and Na, which are the fiber radius (see fig.
from each element of the main diagonal, and solving I ) and number of grid points in the fiber core,
for the elements of u using standard techniques from respectively.
linear algebra. From the observation that for prop- In verifying the performance of our method, we
agating modes the field will approach zero at the have computed the propagation characteristics of step
cladding/jacket boundary, we can set u,% the right- index and parabolic index fibers over a normalized
most element of u, to a very small value (not zero), frequency range of 0 to 20. These index profiles have
and use a simple backsubstitution process to solve analytical solutions and have been studied analyti-
for the rest of the ui. This procedure yields a good cally and numerically by other authors [ 14,23-26 1.
approximation to the field distribution multiplied by Our results agree well with previously published re-
an arbitrary constant. suits, as shown in table 1. Note that for propagating

modes, X must lie between 0 and I (i.e. 0 < X •< l ).
For comparison with a known case, fig. 3 shows

the dispersion characteristics we have computed for
S4. Numerical evaluation, results, and discussion the step index profile. The plot agrees well with the

analytic results for fibers with infinite cladding. The
Although the mathematical formulation of our small differences between the computed and analytic

method for determining the propagation character- cutoff frequencies for each mode are due to the finite
istics of an optical fiber is couched in terms of matrix cladding width used in our computations, and the
equations, there are special structures that lead to finite number of grid points across the fiber. The
very efficient numerical implementations. First, since fundamental mode, which has zero cutoff in the in-
T is a tri-diagonal matrix, we can use sparse matrix finite cladding case, is extremely sensitive to the
techniques to reduce storage requirements for T. cladding width.
Second, since T is a quasi-symmetric tri-diagonal Figures 4, 5, and 6 show our dispersion calcula-
matrix, we can use a similarity transformation to tions for the parabolic index fiber with cladding width
convert T into a real, symmetric matrix [20). Fi- 10 times the core width and p= 1.0, 2.0, and 0.75.
nally, the eigenvalues of a real, symmetric matrix may These compare favorably with published results (see,
be computed using an efficient 0 (N2 ) algorithm (in for example, refs. [ 14,23,26 ] ).
our case, the tqli.c routine from ref. [21 ], which has Two factors have a major influence on the results
an operation count of approximately 30N 2 ). of our computations: the number of grid points used

Using eqs. (25), we have implemented a pair of across the fiber (which we specify in terms of the
C language programs which compute the normalized number of points in the core of the fiber), and the
propagation constants for fibers with arbitrary re- width of the cladding. Figure 7 shows the results of
fractive index profiles. We define the normalized applying our method to a step index fiber for two LP3 propagation constant as modes. For each mode we have calculated the cutoff
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Table I
Comparison of the cutoff frequencies obtained by the finite difference method with analytical and previous numerical results. RrL, is
the fiber radius, &. is the core radius, and 6 is the percentage difference from the infinite cladding result. 256 points were used in the

fiber core.

3a Mode (m, 1) Infinite dadding Normalized cutoff frequency

Rr,,-= I0RRý J(%) Rrf,=20RP, 6(%)

I !,1 4.381 4.391 0.23 4.384 0.07
2 I!, 3.518 3.526 0.23 3.520 0.06

1,2 7.451 7.457 0.08 7.453 0.03
2,1 5.744 5.744 <10-2 5.744 <10-2
2,2 9.645 9.645 < 10-2 9.645 < 10-2
3,1 7.848 7.848 <10-2 7.848 <10-2
4,1 9.904 9.904 <10-2 9.904 <10-2

3 II 3.181 3.189 0.3 3.183 0.06
4 !, 3.000 3.007 0.2 3.002 0.07

5 1,I 2.886 2.894 0.28 2.888 0.07
10 1,1 2.649 2.657 0.30 2.651 0.08
20 1,1 2.527 2.535 0.32 2.529 0.08
0I 1,1 2.405 2.413 0.33 2.407 0.08

1 1 12 13 14 15 1

21 3 22 2 3 2 34 2 35I0.8 1 2 03045 G

C0

IU

0 .6I

CX

0, 0.4

E
- 0.6

0.0

I
S0.4

I~ o .2

0.0 5 10

Normalized Frequency, V

Fig. 3. Dispersion characteristics of a step index fiber (a=oo, 4=0.038). Rr,,= I OR=,,

frequency using from 4 to 256 points in the core, and core increases. The effect of cladding width is also
for fiber radii from 5 to 20 times the core radius. apparent.
From this figure we can see the expected conver- The effect of the number of grid points in the core
gence on a final result as the number of points in the is two fold. As the number of grid points is increased3 the distance between samples of the refractive index
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Normalized Frequency, VI ; 4. Dispersion characteristics of a parabolic index fiber (a=2, p= 1, A=0.038). Rt= 10Rm.
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Fig. 5. Dispersion characteristics of a parabolic index fibLr (a=2, p=0.75, A=0.038). Ra,= i0R,,,
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I 1121 1 31 1 22 "1 X32

0.I0 02 03

0.6

0

10.

0.

qF.. 0.4

U 0 .1 2

Normalized Frequency, V

I ~ ~~~~Fig. 6. Dispersion characteristics of a parabolic index fiber ( a=-- 2, p=- 2,4A= 0.0 38 ). R r•= ! R,
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Fig. 7. Convergence behavior of computed cutoff frequency with the number of grid points in the fiber core for the LP, and LP02 modes

of a step index fiber.
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profile is decreased, resulting in a better approxi- of the cutoff frequency for that mode calculated with

mation of the actual profile. This is especially ap- 256 points in the core. We can see that for mode LPo,
parent in profiles with sharp transitions at the core- the cutoff frequency calculated with 8 points in the
cladding interface, such as for a>> 1. Cases where core is less than 1.0015 times that computed using
p# I (see eq. (I )) are also likely to be poorly mod- 256 points in the core, while for mode LPI, (with a
eled by a small number of core sample points. The higher cutoff frequency) we need at least 12 points
effect of reducing the number of sample points in the in the core for similar results. In general, as the nor-
core is to apply a "low pass" spatial filter to the re- malized frequency increases, the number of points in
fractive index profile. the core must be increased to maintain the accuracy

Setting the number of points in the core also ef- of the method.
fectively applies a filter to the spatial frequency con- For modes with relatively low cutoff frequencies,
tent of the field distributions calculated for each variations in cladding width produce large changes
mode in the fiber. When computing propagation in the calculated cutoff frequency, V,. Cutoff fre-
constants at higher normalized frequencies, using a quency increases as the cladding width decreases.
small number of samples may induce errors due to This is the expected behavior. Analyses assuming in-
a form of "aliasing". These two effects are respon- finite cladding width, while adequate for many pur-
sible for the poor results when the number of grid poses, fail to account for the increasing importance
points in the core is below approximately 10 for the of finite cladding width as the normalized frequency
modes we have examined, becomes smaller. The fundamental mode, which has

Using the step index fiber as an example, fig. 8 no cutoff frequency when the cladding is infinite,
demonstrates the effects of the number of grid points shows a definite cutoff in real fiber.
by plotting the computed cutoff frequency for modes Figure 9 shows the effects of cladding width on the
LPo0 , LP,1, and LP0 2 for several different grid sizes. cutoff frequencies of two LP modes in a step indexSIn this figure, each curve is normalized to the value fiber. In this plot, the curves for each mode are nor-

3 i 05 , , , ,,i 0 0 i

LP(Ol)

C "D L IP ( I I )

I

0 so O0 ISO0 200 00 300

No. of Grid Points in the Core

SFig. 8. Effect of the number of grid points on the computed cutoff frequencies of propagating modes of a step index fiber (LPG,, LPI I,
and LPo ).
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i 1.o5 L-I

5 1.04

:• LP(02)

Cr 1.03
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5 1.01

LP(1 1)
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3Fig. 9. Effect of cladding width on cutoff frequency for a step index fiber.
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Fig. 10. Field patterns for the LPon, LP5 ,1 and LP21 modes of a step index fiber with A=0.038. These patterns were computed using
Rr, b = IOR ,, V= 10, and 32 points in the core.
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Interactive Analysis
* of Propagation in
I Optical Fibers
U GREGORY H. AICKLEN and LAKSHMAN S. TAMIL

Erik ]onsson School of Engineering and Computer Science and Center for Applied Optics.U The University of Texas at Dallas, Richardson 75080

Il ABSTRACT

We have developed a set of computer codes that compute the propagation constants
and field patterns for the propagating modes of cylindrical optical fibers. From a simple
.set of finite difference equations, solutions of the scalar Helmholtz wave-equation may
be computed across a range of normalized frequencies to generate curves describing
the dispersion characteristics of the fiber. Accurate cutoff frequencies for any mode can
also be computed. We designed the computer codes around a-index profiles since these
profile3 have been extensively covered in the literature, but our system also supports
arbitrary profiles within the limits of the "small index gradient" and "weakly guiding"
approximations. The computer codes are accurate and fast. They may be used interactively
to explore dispersion in optical fibers and the effects of finite cladding width on dispersion.

0 1993 John Wiley & Sons. Inc.

INTRODUCTION a homogeneous refractive index medium called the
"cladding." The cladding, in turn, is encased in a

By simplifying a set of computer codes that we use highly lossy material called the "jacket."
in our research, we have put together a system of The refractive index profile of the fiber, called an
computer codes for use in illustrating the propaga- a-index profile, is given by
tion characteristics of optical fibers to both graduate
students and undergraduates. Comprising a menu JnI -2pA(rla)Y] for 0 < r < a
interface, computational kernel, and graphical dis- n2(r) -n211 2A] for l> a
play, our pedagogical system can run on most IBM-
PC compatible computers with a graphics adaptor (I)
and numerical coprocessor.

Here. n, is the maximum refractive index of the
core, A is the relative refractive index difference be-

MATHEMATICAL FORMULATION tween the core axis and cladding, and p is a param-
eter representing the refractive index step or valley

Optical fibers are inhomogeneous dielectric cylin- at the core-cladding boundary. A smooth contin-
ders of radius a, called the "core," surrounded by uation at the core-cladding boundary is expressed

by p = I, while the presence of a step is indicated

Computer Applications in Engineering Education, Vol. 1(3) 197- by p < 1. Setting p> I results in a valley at the core-
204(1993) cladding interface. Some examples of a-index pro-
0 1993 John Wilcy & Sons. Inc. CCC 1061-3773/93/0-0197-O8 files are in Figure I.
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Figure I Examples of a-index profiles.

U The propagation characteristics of an optical fiber Here, N is the set of natural numbers.
are governed by the scalar Helmholtz differential Modes with the same propagation constants are
equation [II grouped under a linearly polarized (LP) mode clas-

sification. Each propagating mode is identified by

d d4+ I di,[ _ ()#2 mi] an LP,,,I designation where m is defined in Eq. (3)
dr r'dr and I is identical to the value in the traditional HEd,,

EEH,1, TEd,, and TMd, mode designation [ 3.
This scalar wave equation is the simplification of We need to solve the differential equation to
the exact vector wave equation under the "'small compute the propagation constants. From the ro-
index gradient" and "weakly guiding" approxima- tational properties of 4, the associated boundary
tions [1). When A <• 1 in an optical fiber, the scalar condition at the center of the core (r = 0) is
approximation yields results that are very close to
the exact vector formulation, and even for larger d 1
differences between the core and cladding refractive I =0 for m=Q
indexes, optimum single-mode fiber parameters ob- 0  (4)
tained from the scalar approximation differ negli- iXO)=0 for m*0
gibly from those obtained using the exact formu-
lation [2). For fibers used in communication ap-
plications, A < 0.03 is common [ 3 1. The other boundary condition applied is the ex-

In Eq. (2), ip(r) is the transverse field function tinction of field at the jacket, written as
(either the electric field or the magnetic field), r is
the radial coordinate, n(r) is the radial refractive 41*k• b = 0 (5)index profile, k is the vacuum wave number, 6 is
the propagation constant which is to be computed,
and m is a mode parameter given by where b is the radius of core and cladding together.The issue of boundary conditions is complex but

I for TEO, and TM0 , modes (P = 0) very important in all numerical work. A more ap-
I =propriate boundary condition in the jacket is an ab-I + for EH,1 modes (p f N) sorbing boundary condition, but for a large cladding

p- for HE,, modes (p EE N) width, as assumed here, our boundary condition is
appropriate (I]. For an excellent discussion of ra-

(3) diation boundary conditions, see Moore et al. [4].
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We need to rewrite the differential equation to with
eliminate dependence on units; this is a more general
formulation that is also easier for computation. We f2pA.\-" 0.< x!< I
do this by setting f(x) = (12A X)> 1

I •When the function u and its derivative are single
4,0 valued, finite and continuous functions of x, the

first and the second differentials can be approxi-
w and mated by second order difference formulas. Using

the finite difference approximation, and defining

I r
x = r (6) v22nII a v =( 2 ) (13)

II where 4,o is the maximum field amplitude and a is
the radius of the core. Substituting Eq. (6) into Eq. we arrive at the discretized wave equation

(2) we obtain
Sui- -I -2i

S d2u I du
+ dx + 2 7+-+ Vf(iha) -

l+ 
a 2 k'n2(Xa) _ 2 -Mx 2 u O()1 -19

+ ui+-A T +- =0 (14)

By including the refractive index distribution
given by Eq. (I), and normalizing all waveguide where h is the distance between grid points and x

dimensions to the core radius, the above equation = ih, { i = 0, 1, 2- -..}.

can be rewritten as Writing finite difference equations at the grid
points, we obtain a set of equations that may be

d 2 U dU written as a matrix equation:

3--- d2 2xM2 Au= (15)

+ [k2n l(! -f(x)) - 2 2 = 0 (8) Toconverttheproblem into an eigenvalue problem,
D we rewrite Eq. (15) as

Defining, V, the normalized frequency, as [T -0llju = 0 (16)

In- n2 (9) where I is the identity matrix, and T isa tri-diagonal

matrix. Equation (16) has a nontrivial solution if
and the modified propagation constant, 0, as and only if# is an eigenvalue [51. Hence, the re-

quired normalized propagation constants contained

V2n 2 F2 2 in # are obtained by finding the eigenvalues of the

2 ( )- - = (10) tridiagonal matrix T.

Eq. (8) becomes EXAMPLES

I d2u I du To construct a system of computer codes that will

dx 2  x dx run well on IBM-PC compatible computers, we have

+ V 2 n2 -) M2 ]U = taken advantage of the special properties of our ma-
+ (n- ) f(x) 1 u trix formulation. Most importantly, since T is a

Sn2 ) . quasi-symmetric tri-diagonal matrix, we can use a
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I ih~r Ullrn Y~~r~pf.•

Version 2.14

Fiber Parameter Selection Numerical Procedures

Profile Type: Computation:
Step: X Dispersion: X

Graded: Field Pattern:

Arbitrary: Cutoff Frequency:

Profile parameters: Computational Parameters:
Alpha: StartingV:

Delta: . Ending V:

Rho: Step Size forV: V L2:

Core Refractive ldx: I.52. Mode Number (m, 1): Aft
Clad Refractive ldx:

Cutoff Lower Bound:
Core Radius (urn): D.00 Cutoff Upper Bound:

Fiber Radius (urn): to-do

Points in Core: 032

Figure 2 Examples of the Fiber User Interface for a step index fiber.

similarity transformation to convert T into a real, The computational kernel of our pedagogical
symmetric matrix [61. The eigenvalues of a real, system consists of a trio of computer codes that
symmetric matrix may be computed using an effi- compute the normalized propagation constants and

cient O(N2 ) algorithm (in our case, the tql i rou- field patterns for cylindrical fibers. Arbitrary refrac-
tine from [ 7 1, which has an operation count of ap- tive index profiles (which must meet the criteria for
proximately 30 N 2 ). Eq. (2) to be valid) are read from a file on disk,

I I1IN
It 12 13 14 15 16

4'21 31 22 32 23 33 24 34 25 35
C 0.8 - 2 3 04 05 06

4-'

C
0
Q

0.6

10• 0.4

L

4,-

0~

z L0.2

0.4 - _

0 5 10 15 20
Normalized Frequency

Figure 3 Normalized propagation constant vs. normalized frequency for a step index fiber ( a
= ,A =0.038). Rfi, = 10 Rco, and N,. = 32.
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Figure 4 Field patterns for the modes LPoI, LP,1 , and LP 21 of a step index fiber (a oo, A
= 0.038) at V = 10. Rt, = I0Rc,, and N, = 32.

while a-index profiles are constructed directly within the step index case. Then, a user indicates which
each program. The numerical computer codes call computation is desired. The shell runs appropriate
upon a common graphical display program and file computer codes to generate the desired data and
1/0 routines. A single shell program controls the graphs.

entire suite of computer codes and coordinates the Figure 3 shows the step index fiber dispersion
loading and execution of code segments as required curves generated using N, = 32, and Figure 4 shows
to perform the computations requested by a user. the field patterns for the LPol, LP, 1, and LP21 modes.

Common to all computer codes in the suite, the The fiber parameters are as shown in Figure 2. Field3 normalized propagation constant is defined by intensity patterns for each LP mode are defined by

k2n? _
i- = n - ( 17 ) 2 =

- k2max

For propagating modes, kn2 ' 0: s kni 131, and so where u,,,, is the maximum field magnitude along
X must lie between 0 and 1. All computer codes the fiber radius for each LP mode.
allow the parameters in Eq. ( I ) to be varied, as well Dispersion curves for a parabolic index fiber are
as the values of b and No, the fiber radius and num- shown in Figure 5. These curves were generated us-

ber of grid points in the fiber core, respectively. ing a = 2 and p = I; all other parameters were iden-
To illustrate our system, we have computed the tical to those for the step index case presented in

propagation characteristics of a step index (a = oo) Figure 3. Figure 6 shows the field pattern for the
and a parabolic index fiber (a = 2) over a normal- LPo ,.LP11 , and LP21 modes.
ized frequency range of 0-20. These refractive index Figures 3-6 were prepared using data passed di-
profiles have solutions that have been studied ana- rectly to gnuplot, a powerful scientific function
lytically and numerically by other authors and data graphing program available without charge
[8,9,10,11,12 1, and our results agree well with pre- on a variety of platforms, including IBM-PC corm-
viously published results. patibles. By using gnuplot as our graphical display

The first step in an analysis is to define the fiber routine, we allow students to view plots on any IBM-
profile parameters, and the number of points to use PC with a standard graphics adapter and prepare
in finite difference approximations. These defini- publication quality graphics on any of the devices
tions are made in the shell, as shown in Figure 2 for supported by gnuplot.
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Figure 5 Normalized propagation constant vs. normalized frequency for a parabolic index
fiber (a = 2, p = 1, A = 0.038). Ri., = 1ORP,, and N, = 32.

Using our suite of computer codes, students can Due to the nature of solutions that can be corn-
compute dispersion characteristics and field patterns puted directly from the scalar Helmholtz waveI for a variety of refractive index profiles in one ses- equation, the field patterns generated by our system
sion. The computations and graphs can be printed are limited to showing the radial variations of each
and compared, facilitating an understanding of the mode. Students may determine the angular variation
effect on propagation of varying fiber parameters. of a field pattern by relating the LP., mode desig-
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Figure 6 Field patterns for modes LPol, LP,, and LP2, of a parabolic index fiber (a = oo, p
= IA = 0.038)at V = 10. Rh, = 10R,, and N, = 32.
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nations to TE, TM, HE, and EH mode designations review of the manuscript. This research was sup-
as described in the introduction, and noting that ported in part by U.S. Office of Naval Research
there are 2m field maxima around the fiber circum- Grant N0014-92-J-1030, and this support is grate-
ference and I field maxima along the fiber radius fully acknowledged.
1 31. A further release of our software will include
modules designed to aid in the construction of full
2-D field patterns.

Two factors have a major influence on the results REFERENCES
of our computations: the number of grid points used
across the fiber (which we specify as the number of 1Il T. Okoshi. Optical Fibers. Academic Press, New
points in the core of the fiber), and the width of the York, 1977.
cladding. For modes with low cutoff frequencies, 121 S. I. Hosain, 1. C. Goyal, and A. K. Ghatak, "Ac-
variations in cladding width produce large changes curacy of scalar approximation for single-mode fi-
in the calculated cutoff frequency, V, Cutoff fre- bers," Optics Commun., Vol. 47, 1973, pp. 313-

quency increases as the cladding width decreases. 316.

This is the expected behavior. The fundamental [3] J. Senior, Optical Fiber Communications: Principles

mode, which has no cutoff frequency when the and Practice. Prentice-Hall, London, 1985.
cladding iswhnfinit, shows a t cutoff ien real [4] T. Moore, J. Blaschak, A. Taflove, and G. Kriegs-
cladding is infinite, shows a definite cutoff in real mann, "Theory and application of radiation
fiber. boundary operators," IEEE Trans. Ant. Prop., Vol.

The number of grid points across the fiber affects AP-36, 1988, pp. 1797-1811.
the accuracy of the finite difference approximations [5] G. Strang. Linear Algebra and Its Applications. Ac-
used in computing solutions to the wave equation. ademic Press, New York, 1976.
In general, a coarse grid results in an apparent shift [61 J. H. Wilkinson, The Algebraic Eigenvalue Problem.
of all propagation constants that increases with fre- Oxford University Press, 1965.
quency. In our experience, 16 points in the core are [7] W. H. Press, B. P. Flannery, S. A. Teukolsky, and
sufficient for normalized frequencies below 10. N, W. T. Vetterling, Numerical Recipes in C. Cam-

= 128 is sufficient for most cases of interest, but will bridge University Press, New York, 1988.
[8] C. C. Su and C. H. Shen, "Calculation of propagationconstants and cutoff frequencies of radially inho-

mogeneous optical fibers," IEEE Trans. Microwave

CONCLUSIONS Theory Tech., Vol. MTT-34, 1986, pp. 328-332.
191 K. Okamoto and T. Okoshi, "Analysis of wave

We have developed an integrated set of computer propagation in optical fibers having core with alpha-
codes to evaluate propagation constants and field power refractive-index distribution and uniformcladding," IEEE Trans. Microwave Theory Tech.,patterns of modes by transforming the scalar wave Vol. MTT-24, 1976, pp. 416-421.

equation into a set of finite difference equations and (101 T. I. Lukowski and F. P. Kapron, "Parabolic fiber
then converting into a matrix eigenvalue problem. cutoffs: A comparison of theories," J. Opt. Soc.
Our computer codes are fast enough to run on an Amer., Vol. 67, 1977, pp. 1185-1187.
IBM-PC with a numeric coprocessor, are accurate, III] E. K. Sharma, I. C. Goyal, and A. K. Ghatak, "Cal-
and provide a convenient system with which stu- culation of cutoff frequencies in optical fibers for
dents can explore propagation in optical fibers. arbitrary profiles using the matrix method," IEEE

J. Quantum Electron.. Vol. QE-17. 1970, pp. 2317-
2321.
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